Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (R)-6-hydroxynicotine Identifier CHEBI:58413 Charge 1 Formula C10H15N2O InChIKeyhelp_outline ATRCOGLZUCICIV-SECBINFHSA-O SMILEShelp_outline C[NH+]1CCC[C@@H]1c1ccc(O)nc1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 5,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,585 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 6-hydroxypseudooxynicotine Identifier CHEBI:58682 Charge 1 Formula C10H15N2O2 InChIKeyhelp_outline UMLOUOBDBGOHHR-UHFFFAOYSA-O SMILEShelp_outline C[NH2+]CCCC(=O)c1ccc(O)nc1 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 389 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:10012 | RHEA:10013 | RHEA:10014 | RHEA:10015 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Crystal structure of 6-hydroxy-D-nicotine oxidase from Arthrobacter nicotinovorans.
Koetter J.W., Schulz G.E.
The crystal structure of 6-hydroxy-d-nicotine oxidase (EC 1.5.3.6) was solved by X-ray diffraction analysis in three crystal forms at resolutions up to 1.9 A. The enzyme is monomeric in solution and also in the mother liquor but formed disulfide-dimers in all crystals. It belongs to the p-cresol m ... >> More
The crystal structure of 6-hydroxy-d-nicotine oxidase (EC 1.5.3.6) was solved by X-ray diffraction analysis in three crystal forms at resolutions up to 1.9 A. The enzyme is monomeric in solution and also in the mother liquor but formed disulfide-dimers in all crystals. It belongs to the p-cresol methylhydroxylase-vanillyl-alcohol oxidase family and contains an FAD covalently bound to the polypeptide. The covalent bond of this enzyme was the first for which a purely autocatalytic formation had been shown. In contrast to previous reports, the bond does not involve N(epsilon2) (N3) of His72 but the N(delta1) (N1) atom. The geometry of this reaction is proposed and the autoflavinylation is discussed in the light of homologous structures. The enzyme is specific for 6-hydroxy-D-nicotine and is inhibited by the L-enantiomer. This observation was verified by modeling enzyme-substrate and enzyme-inhibitor complexes, which also showed the geometry of the catalyzed reaction. The binding models indicated that the deprotonation of the substrate rather than the hydride transfer is the specificity-determining step. The functionally closely related 6-hydroxy-L-nicotine oxidase processing the L-enantiomer is sequence-related to the greater glutathione reductase family with quite a different chainfold. A model of this "sister enzyme" derived from known homologous structures suggests that the reported L-substrate specificity and D-enantiomer inhibition are also determined by the location of the deprotonating base. << Less
J. Mol. Biol. 352:418-428(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. Consequences on flavinylation and enzyme activity.
Mauch L., Bichler V., Brandsch R.
In 6-hydroxy-D-nicotine oxidase (6-HDNO) FAD is covalently bound to His71 of the polypeptide chain by an 8 alpha-(N3-histidyl)-riboflavin linkage. The FAD-binding histidine was exchanged by site-directed mutagenesis to either a Cys- or Tyr-residue, two amino acids known to be involved in covalent ... >> More
In 6-hydroxy-D-nicotine oxidase (6-HDNO) FAD is covalently bound to His71 of the polypeptide chain by an 8 alpha-(N3-histidyl)-riboflavin linkage. The FAD-binding histidine was exchanged by site-directed mutagenesis to either a Cys- or Tyr-residue, two amino acids known to be involved in covalent binding of FAD in other enzymes, or to a Ser-residue. None of the amino acid replacements for His71 allowed covalent FAD incorporation into the 6-HDNO polypeptide. Thus, the amino acid residues involved in covalent FAD-binding require a specific polypeptide surrounding in order for this modification to proceed and cannot be replaced with each other. Enzyme activity was completely abolished with Tyr in place of His71. 6-HDNO activity with non-covalently bound FAD was found with 6-HDNO-Cys and to a lesser extent also with 6-HDNO-Ser. However, the Km values for 6-HDNO-Cys and 6-HDNO-Ser were increased approximately 20-fold as compared to 6-HDNO-His. Both mutant enzymes, in contrast to the wild-type enzyme, needed additional FAD in the enzymatic assay (50 microM for 6-HDNO-Ser and 10 microM for 6-HDNO-Cys) for maximal enzyme activity. << Less
FEBS Lett. 257:86-88(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
Comments
Multi-step reaction: RHEA:46988 and RHEA:46996.