Reaction participants Show >> << Hide
- Name help_outline 2,3,5,6-tetrachlorophenol Identifier CHEBI:59815 (Beilstein: 3956199) help_outline Charge -1 Formula C6HCl4O InChIKeyhelp_outline KEWNKZNZRIAIAK-UHFFFAOYSA-M SMILEShelp_outline [O-]c1c(Cl)c(Cl)cc(Cl)c1Cl 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,329 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,3,5,6-tetrachlorohydroquinone Identifier CHEBI:57994 Charge -2 Formula C6Cl4O2 InChIKeyhelp_outline STOSPPMGXZPHKP-UHFFFAOYSA-L SMILEShelp_outline [O-]c1c(Cl)c(Cl)c([O-])c(Cl)c1Cl 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,335 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:11440 | RHEA:11441 | RHEA:11442 | RHEA:11443 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries.
Xun L., Topp E., Orser C.S.
An understanding of the enzymatic reactions catalyzing the degradation of substituted phenols, a major group of environmental pollutants, is required for the development of biological methods for the decontamination of halophenol-polluted sites. We found that a flavomonooxygenase, pentachloropheno ... >> More
An understanding of the enzymatic reactions catalyzing the degradation of substituted phenols, a major group of environmental pollutants, is required for the development of biological methods for the decontamination of halophenol-polluted sites. We found that a flavomonooxygenase, pentachlorophenol hydroxylase, isolated from a Flavobacterium sp., catalyzed a primary attack on a broad range of substituted phenols, hydroxylating the para position and removing halogen, nitro, amino, and cyano groups to produce halide, nitrite, hydroxylamine, and cyanide, respectively. Elimination of 1 mol of a halogen, nitro, or cyano group required 2 mol of NADPH, while only 1 mol of NADPH was required to remove 1 mol of an amino group or hydrogen. << Less
J Bacteriol 174:2898-2902(1992) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Confirmation of oxidative dehalogenation of pentachlorophenol by a Flavobacterium pentachlorophenol hydroxylase.
Xun L., Topp E., Orser C.S.
Pentachlorophenol (PCP) hydroxylase purified from Flavobacterium sp. strain ATCC 39723 converted PCP or 2,3,5,6-tetrachlorophenol to tetrachloro-p-hydroquinone (TeCH) with the co-consumption of O2 and NADPH. The purified enzyme incorporated 18O from 18O2 but not from H218O into the reaction end pr ... >> More
Pentachlorophenol (PCP) hydroxylase purified from Flavobacterium sp. strain ATCC 39723 converted PCP or 2,3,5,6-tetrachlorophenol to tetrachloro-p-hydroquinone (TeCH) with the co-consumption of O2 and NADPH. The purified enzyme incorporated 18O from 18O2 but not from H218O into the reaction end product TeCH. The results clearly demonstrate that PCP is oxidatively converted to TeCH by a monooxygenase-type enzyme from Flavobacterium sp. strain ATCC 39723. << Less
J Bacteriol 174:5745-5747(1992) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD).
Dai M., Rogers J.B., Warner J.R., Copley S.D.
The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to te ... >> More
The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to tetrachlorohydroquinone by PcpD, a protein that had previously been suggested to be a PCP hydroxylase reductase. pcpD is immediately downstream of pcpB, the gene encoding PCP hydroxylase (PCP monooxygenase). Expression of PcpD is induced in the presence of PCP. A mutant strain lacking functional PcpD has an impaired ability to remove PCP from the medium. In contrast, the mutant strain removes tetrachlorophenol from the medium at the same rate as does the wild-type strain. These data suggest that PcpD catalyzes a step necessary for degradation of PCP, but not for degradation of tetrachlorophenol. Based upon the known mechanisms of flavin monooxygenases such as PCP hydroxylase, hydroxylation of PCP should produce tetrachlorobenzoquinone, while hydroxylation of tetrachlorophenol should produce tetrachlorohydroquinone. Thus, we proposed and verified experimentally that PcpD is a tetrachlorobenzoquinone reductase that catalyzes the NADPH-dependent reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone. << Less
J Bacteriol 185:302-310(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Identification, characterization, and site-directed mutagenesis of recombinant pentachlorophenol 4-monooxygenase.
Nakamura T., Motoyama T., Hirono S., Yamaguchi I.
In a previous study, we constructed a three-dimensional (3D) structure of pentachlorophenol 4-monooxygenase (PcpB). In this study, further analyses are performed to examine the important amino acid residues in the catalytic reaction by identification of the proteins with mass spectrometry, circula ... >> More
In a previous study, we constructed a three-dimensional (3D) structure of pentachlorophenol 4-monooxygenase (PcpB). In this study, further analyses are performed to examine the important amino acid residues in the catalytic reaction by identification of the proteins with mass spectrometry, circular dichroism (CD) and UV spectrometry, and determination of kinetic parameters. Recombinant histidine-tagged PcpB protein was produced and shown to have a similar activity to the native protein. Mutant proteins of PcpB were then produced (F85A, Y216A, Y216F, R235A, R235E, R235K, Y397A and Y397F) on the basis of the proposed 3D structure. The CD spectra of the proteins showed that there were no major changes in the structures of the mutant proteins, with the exception of R235E. Steady-state kinetics showed a 20-fold reduction in k(cat)/K(m) and a ninefold increase in K(m) for Y216F and a threefold reduction in k(cat)/K(m) and a sixfold increase in K(m) for Y397F compared to the wild type. On the other hand, the value of k(cat)/K(m) of R235K mutant was the same as that of wild type. As a result, it was confirmed that Y216 and Y397 play an important role with respect to the recognition of the substrate. << Less
Biochim Biophys Acta 1700:151-159(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Mechanism of enzymatic dehalogenation of pentachlorophenol by Arthrobacter sp. strain ATCC 33790.
Schenk T., Muller R., Lingens F.
Pentachlorophenol (PCP) dehalogenase from Arthrobacter sp. strain ATCC 33790 converts PCP to tetrachlorohydroquinone. In labeling experiments with H(2)18O or 18O2, only with H(2)18O was labeled product found. However, unlabeled tetrachlorohydroquinone became labeled after incubation with the enzym ... >> More
Pentachlorophenol (PCP) dehalogenase from Arthrobacter sp. strain ATCC 33790 converts PCP to tetrachlorohydroquinone. In labeling experiments with H(2)18O or 18O2, only with H(2)18O was labeled product found. However, unlabeled tetrachlorohydroquinone became labeled after incubation with the enzyme in H(2)18O. Therefore, distinction between an oxygenolytic or a hydrolytic dehalogenation mechanism for the PCP dehalogenase is not possible. << Less
J Bacteriol 172:7272-7274(1990) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Verification of the role of PCP 4-monooxygenase in chlorine elimination from pentachlorophenol by Flavobacterium sp. strain ATCC 39723.
Lange C.C., Schneider B.J., Orser C.S.
The bacterial enzyme PCP 4-monooxygenase from Flavobacterium sp. strain ATCC 39723 catalyzes the oxygenolytic removal of the first chlorine from pentachlorophenol. PCP 4-monooxygenase is an FAD binding, NADPH requiring oxygenase, with similar functional domains as other bacterial flavoprotein mono ... >> More
The bacterial enzyme PCP 4-monooxygenase from Flavobacterium sp. strain ATCC 39723 catalyzes the oxygenolytic removal of the first chlorine from pentachlorophenol. PCP 4-monooxygenase is an FAD binding, NADPH requiring oxygenase, with similar functional domains as other bacterial flavoprotein monooxygenases specific for phenolic substrates. However, the definitive proof for the singular role of an oxygenolytic elimination of the primary chlorine from pentachlorophenol by Flavobacterium sp. has awaited the development of a genetic system whereby targeted mutagenesis via allelic exchange could be carried out with the corresponding gene from PCP 4-monooxygenase, pcpB. We report the development of a genetic system for Flavobacterium sp. strain ATCC 39723, and its application in targeted mutagenesis of the pcpB allele for elimination of PCP 4-monooxygenase activity. << Less
Biochem Biophys Res Commun 219:146-149(1996) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.