Reaction participants Show >> << Hide
- Name help_outline a 2-oxocarboxylate Identifier CHEBI:35179 Charge -1 Formula C2O3R SMILEShelp_outline [O-]C(=O)C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 598 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an aldehyde Identifier CHEBI:17478 Charge 0 Formula CHOR SMILEShelp_outline [H]C([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 925 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11628 | RHEA:11629 | RHEA:11630 | RHEA:11631 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
- RHEA:55073
- RHEA:54361
- RHEA:54357
- RHEA:50313
- RHEA:45485
- RHEA:23369
- RHEA:21109
- RHEA:20949
- RHEA:18698
- RHEA:18018
- RHEA:14186
- RHEA:10137
Publications
-
The influence of steric and electronic parameters on the substrate behavior of 2-oxo acids to yeast pyruvate decarboxylase.
Lehmann H., Fischer G., Hubner G., Kohnert K.D., Schellenberger A.
Eur. J. Biochem. 32:83-87(1973) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Effects of deletions at the carboxyl terminus of Zymomonas mobilis pyruvate decarboxylase on the kinetic properties and substrate specificity.
Chang A.K., Nixon P.F., Duggleby R.G.
The three-dimensional structure of Zymomonas mobilis pyruvate decarboxylase shows that the carboxyl-terminal region of the protein occludes the active site. This observation is consistent with earlier suggestions that the active site is inaccessible to solvent during catalysis. However, the carbox ... >> More
The three-dimensional structure of Zymomonas mobilis pyruvate decarboxylase shows that the carboxyl-terminal region of the protein occludes the active site. This observation is consistent with earlier suggestions that the active site is inaccessible to solvent during catalysis. However, the carboxyl-terminal region must move aside to allow entry of the substrate, and again to permit the products to leave. Here we have examined the role of the carboxyl terminus by making 15 variants of the enzyme with serial deletions. The activity is largely unaffected by removal of up to seven residues but deletion of the next two, R561 and S560, results in a drastic loss of activity. Five of these deletion mutants were purified and fully characterized and showed progressive decreases in activity, in the ability to discriminate between pyruvate and larger substrates, and in cofactor affinity. Several substitution mutants at residues R561 and S560 were prepared, purified, and fully characterized. The results indicate important roles for the side-chain of R561 and the backbone atoms of S560. It is suggested that the carboxyl-terminal region of pyruvate decarboxylase is needed to lock in the cofactors and for the proper closure of the active site that is required for discrimination between substrates and for decarboxylation to occur. << Less