Enzymes
UniProtKB help_outline | 33,452 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-(5-phospho-β-D-ribosyl)anthranilate Identifier CHEBI:18277 Charge -3 Formula C12H13NO9P InChIKeyhelp_outline PMFMJXPRNJUYMB-GWOFURMSSA-K SMILEShelp_outline O[C@H]1[C@@H](O)[C@H](Nc2ccccc2C([O-])=O)O[C@@H]1COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-phospho-α-D-ribose 1-diphosphate Identifier CHEBI:58017 Charge -5 Formula C5H8O14P3 InChIKeyhelp_outline PQGCEDQWHSBAJP-TXICZTDVSA-I SMILEShelp_outline O[C@H]1[C@@H](O)[C@H](O[C@@H]1COP([O-])([O-])=O)OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline anthranilate Identifier CHEBI:16567 (Beilstein: 3904977) help_outline Charge -1 Formula C7H6NO2 InChIKeyhelp_outline RWZYAGGXGHYGMB-UHFFFAOYSA-M SMILEShelp_outline Nc1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:11768 | RHEA:11769 | RHEA:11770 | RHEA:11771 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Tryptophan biosynthetic genes in eukaryotic microorganisms.
Hutter R., Niederberger P., DeMoss J.A.
In recent years more information about tryptophan biosynthesis in eukaryotic microorganisms has become available. The emphasis has been on genetics and biochemistry of the pathway. Eukaryotes manifest a trend toward fewer genes and toward multifunctional proteins, while prokaryotes have a greater ... >> More
In recent years more information about tryptophan biosynthesis in eukaryotic microorganisms has become available. The emphasis has been on genetics and biochemistry of the pathway. Eukaryotes manifest a trend toward fewer genes and toward multifunctional proteins, while prokaryotes have a greater tendency toward separate activity domains but the genes tend to be clustered genetically. Cloning of various structural tryptophan biosynthetic genes and studies on their expression in homologous and heterologous hosts have made it possible to analyze promoter structures in detail and to define structural elements involved in regulated gene expression. Comparisons of homologous genes from different organisms have highlighted the conservation of the activity domains or parts therefrom involved in the catalysis of single steps. These studies also point to a stringent maintenance of domains responsible for protein-protein aggregation. Physiological studies will be facilitated by the availability of single cloned genes and especially the artificial gene cluster containing all five TRP genes from yeast. The range of physiological manipulation has thus been enormously broadened. With chromosomal mutations it has been possible to study primarily downward modulation of a pathway. We can now initiate studies on upward modulation, since enzyme levels appear to increase in proportion to gene dose. The new range of downward and upward modulation in the levels of single enzymes and combinations of enzymes may contribute to a better understanding of flux regulation and its influence on the overall physiology of an organism. << Less
Annu Rev Microbiol 40:55-77(1986) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Purification, characterization and crystallization of thermostable anthranilate phosphoribosyltransferase from Sulfolobus solfataricus.
Ivens A., Mayans O., Szadkowski H., Wilmanns M., Kirschner K.
Anthranilate phosphoribosyltransferase (TrpD; EC 2.4.2.18) from the hyperthermophilic archaeon Sulfolobus solfataricus (ssTrpD) was expressed in Escherichia coli, purified and crystallized. Analytical gel permeation chromatography revealed a homodimeric composition of the enzyme. The steady-state ... >> More
Anthranilate phosphoribosyltransferase (TrpD; EC 2.4.2.18) from the hyperthermophilic archaeon Sulfolobus solfataricus (ssTrpD) was expressed in Escherichia coli, purified and crystallized. Analytical gel permeation chromatography revealed a homodimeric composition of the enzyme. The steady-state kinetic characteristics suggest tight binding of the substrate anthranilic acid and efficient catalysis at the physiological growth temperature of S. solfataricus. Crystals of ssTrpD diffract to better than 2.6 A resolution and preliminary X-ray characterization was carried out. The crystals are suitable for structure determination. << Less