Reaction participants Show >> << Hide
- Name help_outline (S)-malate Identifier CHEBI:15589 (Beilstein: 4133558) help_outline Charge -2 Formula C4H4O5 InChIKeyhelp_outline BJEPYKJPYRNKOW-REOHCLBHSA-L SMILEShelp_outline O[C@@H](CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,171 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,102 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 214 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:12653 | RHEA:12654 | RHEA:12655 | RHEA:12656 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12.
Wang J., Tan H., Zhao Z.K.
NAD(+)-dependent malic enzyme (NAD-ME) gene from Escherichia coli K12 was inserted into an expression vector pET24b(+) and transformed into E. coli BL21 (DE3). Recombinant NAD-ME was expressed upon IPTG induction, purified with affinity chromatography, and biochemically characterized. The results ... >> More
NAD(+)-dependent malic enzyme (NAD-ME) gene from Escherichia coli K12 was inserted into an expression vector pET24b(+) and transformed into E. coli BL21 (DE3). Recombinant NAD-ME was expressed upon IPTG induction, purified with affinity chromatography, and biochemically characterized. The results showed that recombinant NAD-ME could be produced mainly in a soluble form. The monomeric molecular weight of recombinant NAD-ME was about 65 kDa, whereas monomer, homotetramer, and homooctamer were formed in solution as revealed by nondenaturing polyacrylamide gel electrophoresis analysis. Finally, the K(m) values of NAD-ME for L-malate and NAD were determined as 0.420+/-0.174 and 0.097+/-0.038 mM, respectively, at pH 7.2. By using this over-expression and purification system, recombinant E. coli K12 NAD-ME can now be obtained in large quantity necessary for further biochemical characterization and applications. << Less
-
Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism.
Tronconi M.A., Fahnenstich H., Gerrard Weehler M.C., Andreo C.S., Fluegge U.-I., Drincovich M.F., Maurino V.G.
Although the nonphotosynthetic NAD-malic enzyme (NAD-ME) was assumed to play a central role in the metabolite flux through the tricarboxylic acid cycle, the knowledge on this enzyme is still limited. Here, we report on the identification and characterization of two genes encoding mitochondrial NAD ... >> More
Although the nonphotosynthetic NAD-malic enzyme (NAD-ME) was assumed to play a central role in the metabolite flux through the tricarboxylic acid cycle, the knowledge on this enzyme is still limited. Here, we report on the identification and characterization of two genes encoding mitochondrial NAD-MEs from Arabidopsis (Arabidopsis thaliana), AtNAD-ME1 and AtNAD-ME2. The encoded proteins can be grouped into the two clades found in the plant NAD-ME phylogenetic tree. AtNAD-ME1 belongs to the clade that includes known alpha-subunits with molecular masses of approximately 65 kD, while AtNAD-ME2 clusters with the known beta-subunits with molecular masses of approximately 58 kD. The separated recombinant proteins showed NAD-ME activity, presented comparable kinetic properties, and are dimers in their active conformation. Native electrophoresis coupled to denaturing electrophoresis revealed that in vivo AtNAD-ME forms a dimer of nonidentical subunits in Arabidopsis. Further support for this conclusion was obtained by reconstitution of the active heterodimer in vitro. The characterization of loss-of-function mutants for both AtNAD-MEs indicated that both proteins also exhibit enzymatic activity in vivo. Neither the single nor the double mutants showed a growth or developmental phenotype, suggesting that NAD-ME activity is not essential for normal autotrophic development. Nevertheless, metabolic profiling of plants completely lacking NAD-ME activity revealed differential patterns of modifications in light and dark periods and indicates a major role for NAD-MEs during nocturnal metabolism. << Less
-
NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control.
Tronconi M.A., Gerrard Wheeler M.C., Maurino V.G., Drincovich M.F., Andreo C.S.
The Arabidopsis thaliana genome contains two genes encoding NAD-MEs [NAD-dependent malic enzymes; NAD-ME1 (TAIR accession number At4G13560) and NAD-ME2 (TAIR accession number At4G00570)]. The encoded proteins are localized to mitochondria and assemble as homo- and hetero-dimers in vitro and in viv ... >> More
The Arabidopsis thaliana genome contains two genes encoding NAD-MEs [NAD-dependent malic enzymes; NAD-ME1 (TAIR accession number At4G13560) and NAD-ME2 (TAIR accession number At4G00570)]. The encoded proteins are localized to mitochondria and assemble as homo- and hetero-dimers in vitro and in vivo. In the present work, the kinetic mechanisms of NAD-ME1 and -ME2 homodimers and NAD-MEH (NAD-ME heterodimer) were studied as an approach to understand the contribution of these enzymes to plant physiology. Product-inhibition and substrate-analogue analyses indicated that NAD-ME2 follows a sequential ordered Bi-Ter mechanism, NAD being the leading substrate followed by L-malate. On the other hand, NAD-ME1 and NAD-MEH can bind both substrates randomly. However, NAD-ME1 shows a preferred route that involves the addition of NAD first. As a consequence of the kinetic mechanism, NAD-ME1 showed a partial inhibition by L-malate at low NAD concentrations. The analysis of a protein chimaeric for NAD-ME1 and -ME2 indicated that the first 176 amino acids are associated with the differences observed in the kinetic mechanisms of the enzymes. Furthermore, NAD-ME1, -ME2 and -MEH catalyse the reverse reaction (pyruvate reductive carboxylation) with very low catalytic activity, supporting the notion that these isoforms act only in L-malate oxidation in plant mitochondria. The different kinetic mechanism of each NAD-ME entity suggests that, for a metabolic condition in which the mitochondrial NAD level is low and the L-malate level is high, the activity of NAD-ME2 and/or -MEH would be preferred over that of NAD-ME1. << Less
-
Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure.
Bologna F.P., Andreo C.S., Drincovich M.F.
Malic enzymes (MEs) catalyze the oxidative decarboxylation of malate in the presence of a divalent metal ion. In eukaryotes, well-conserved cytoplasmic, mitochondrial, and plastidic MEs have been characterized. On the other hand, distinct groups can be detected among prokaryotic MEs, which are mor ... >> More
Malic enzymes (MEs) catalyze the oxidative decarboxylation of malate in the presence of a divalent metal ion. In eukaryotes, well-conserved cytoplasmic, mitochondrial, and plastidic MEs have been characterized. On the other hand, distinct groups can be detected among prokaryotic MEs, which are more diverse in structure and less well characterized than their eukaryotic counterparts. In Escherichia coli, two genes with a high degree of homology to ME can be detected: sfcA and maeB. MaeB possesses a multimodular structure: the N-terminal extension shows homology to ME, while the C-terminal extension shows homology to phosphotransacetylases (PTAs). In the present work, a detailed characterization of the products of E. coli sfcA and maeB was performed. The results indicate that the two MEs exhibit relevant kinetic, regulatory, and structural differences. SfcA is a NAD(P) ME, while MaeB is a NADP-specific ME highly regulated by key metabolites. Characterization of truncated versions of MaeB indicated that the PTA domain is not essential for the ME reaction. Nevertheless, truncated MaeB without the PTA domain loses most of its metabolic ME modulation and its native oligomeric state. Thus, the association of the two structural domains in MaeB seems to facilitate metabolic control of the enzyme. Although the PTA domain in MaeB is highly similar to the domains of proteins with PTA activity, MaeB and its PTA domain do not exhibit PTA activity. Determination of the distinct properties of recombinant products of sfcA and maeB performed in the present work will help to clarify the roles of MEs in prokaryotic metabolism. << Less