Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA Identifier CHEBI:57312 Charge -4 Formula C26H40N7O18P3S InChIKeyhelp_outline PEKYNTFSOBAABV-LQUDNSJZSA-J SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC(C)([C@H](C(NCCC(NCCSC(=O)[C@H]([C@H](C)O)C)=O)=O)O)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-methyl-3-oxobutanoyl-CoA Identifier CHEBI:57335 Charge -4 Formula C26H38N7O18P3S InChIKeyhelp_outline NHNODHRSCRALBF-NQNBQJKNSA-J SMILEShelp_outline CC(C(C)=O)C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13281 | RHEA:13282 | RHEA:13283 | RHEA:13284 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism.
Yang S.Y., He X.Y., Olpin S.E., Sutton V.R., McMenamin J., Philipp M., Denman R.B., Malik M.
Mutations in the HSD17B10 gene were identified in two previously described mentally retarded males. A point mutation c.776G>C was found from a survivor (SV), whereas a potent mutation, c.419C>T, was identified in another deceased case (SF) with undetectable hydroxysteroid (17beta) dehydrogenase 10 ... >> More
Mutations in the HSD17B10 gene were identified in two previously described mentally retarded males. A point mutation c.776G>C was found from a survivor (SV), whereas a potent mutation, c.419C>T, was identified in another deceased case (SF) with undetectable hydroxysteroid (17beta) dehydrogenase 10 (HSD10) activity. Protein levels of mutant HSD10(R130C) in patient SF and HSD10(E249Q) in patient SV were about half that of HSD10 in normal controls. The E249Q mutation appears to affect HSD10 subunit interactions, resulting in an allosteric regulatory enzyme. For catalyzing the oxidation of allopregnanolone by NAD+ the Hill coefficient of the mutant enzyme is approximately 1.3. HSD10(E249Q) was unable to catalyze the dehydrogenation of 2-methyl-3-hydroxybutyryl-CoA and the oxidation of allopregnanolone, a positive modulator of the gamma-aminobutyric acid type A receptor, at low substrate concentrations. Neurosteroid homeostasis is critical for normal cognitive development, and there is increasing evidence that a blockade of isoleucine catabolism alone does not commonly cause developmental disabilities. The results support the theory that an imbalance in neurosteroid metabolism could be a major cause of the neurological handicap associated with hydroxysteroid (17beta) dehydrogenase 10 deficiency. << Less
Proc. Natl. Acad. Sci. U.S.A. 106:14820-14824(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida.
Conrad R.S., Massey L.K., Sokatch J.R.
Pseudomonas putida oxidized isoleucine to acetyl-coenzyme A (CoA) and propionyl-CoA by a pathway which involved deamination of d-isoleucine by oxidation and l-isoleucine by transamination, oxidative decarboxylation, and beta oxidation at the ethyl side chain. At least three separate inductive even ... >> More
Pseudomonas putida oxidized isoleucine to acetyl-coenzyme A (CoA) and propionyl-CoA by a pathway which involved deamination of d-isoleucine by oxidation and l-isoleucine by transamination, oxidative decarboxylation, and beta oxidation at the ethyl side chain. At least three separate inductive events were required to form all of the enzymes of the pathway: d-amino acid dehydrogenase was induced during growth in the presence of d-isoleucine; branched-chain keto dehydrogenase was induced during growth on 2-keto-3-methylvalerate and enzymes specific for isoleucine metabolism; tiglyl-CoA hydrase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase were induced by growth on isoleucine, 2-keto-3-methylvalerate, 2-methylbutyrate, or tiglate. Tiglyl-CoA hydrase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase were purified simultaneously by several enzyme concentration procedures, but were separated by isoelectric focusing. Isoelectric points, pH optima, substrate specificity, and requirements for enzyme action were determined for both enzymes. Evidence was obtained that the dehydrogenase catalyzed the oxidation of 2-methyl-3-hydroxybutyryl-CoA to 2-methylacetoacetyl-CoA. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase catalyzed the oxidation of 3-hydroxybutyryl-CoA, but l-3-hydroxyacyl-CoA dehydrogenase from pig heart did not catalyze the oxidation of 2-methyl-3-hydroxybutyryl-CoA; therefore, they appeared to be different dehydrogenases. Furthermore, growth on tiglate resulted in the induction of tiglyl-CoA hydrase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase, but these two enzymes were not induced during growth on crotonate or 3-hydroxybutyrate. << Less
-
Expanded substrate screenings of human and Drosophila type 10 17beta-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3alpha/7alpha/7beta/17beta/20beta/21-HSD.
Shafqat N., Marschall H.U., Filling C., Nordling E., Wu X.Q., Bjork L., Thyberg J., Martensson E., Salim S., Jornvall H., Oppermann U.
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conve ... >> More
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conversion patterns. We analysed 17beta-HSD type 10 (17beta-HSD10) from humans and Drosophila, the latter known to be essential in development. In addition to the known hydroxyacyl-CoA dehydrogenase, and 3alpha-OH and 17beta-OH activities with sex steroids, we here demonstrate novel activities of 17beta-HSD10. Both species variants oxidize the 20beta-OH and 21-OH groups in C21 steroids, and act as 7beta-OH dehydrogenases of ursodeoxycholic or isoursodeoxycholic acid (also known as 7beta-hydroxylithocholic acid or 7beta-hydroxyisolithocholic acid respectively). Additionally, the human orthologue oxidizes the 7alpha-OH of chenodeoxycholic acid (5beta-cholanic acid, 3alpha,7alpha-diol) and cholic acid (5beta-cholanic acid). These novel substrate specificities are explained by homology models based on the orthologous rat crystal structure, showing a wide hydrophobic cleft, capable of accommodating steroids in different orientations. These properties suggest that the human enzyme is involved in glucocorticoid and gestagen catabolism, and participates in bile acid isomerization. Confocal microscopy and electron microscopy studies reveal that the human form is localized to mitochondria, whereas Drosophila 17beta-HSD10 shows a cytosolic localization pattern, possibly due to an N-terminal sequence difference that in human 17beta-HSD10 constitutes a mitochondrial targeting signal, extending into the Rossmann-fold motif. << Less
Biochem. J. 376:49-60(2003) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.