Enzymes
UniProtKB help_outline | 33,597 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 346 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-D-glucosamine 1-phosphate Identifier CHEBI:58516 Charge -1 Formula C6H13NO8P InChIKeyhelp_outline YMJBYRVFGYXULK-QZABAPFNSA-M SMILEShelp_outline [NH3+][C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,494 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-α-D-glucosamine 1-phosphate Identifier CHEBI:57776 (Beilstein: 3702875) help_outline Charge -2 Formula C8H14NO9P InChIKeyhelp_outline FZLJPEPAYPUMMR-FMDGEEDCSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:13725 | RHEA:13726 | RHEA:13727 | RHEA:13728 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli.
Gehring A.M., Lees W.J., Mindiola D.J., Walsh C.T., Brown E.D.
The GlmU protein is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities which catalyzes the transformation of glucosamine-1-P, UTP, and acetyl-CoA to UDP-N-acetylglucosamine [Mengin-Lecreulx, D., & van Heijenoort, J. (1994) J. Bacteriol. 176, 57 ... >> More
The GlmU protein is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities which catalyzes the transformation of glucosamine-1-P, UTP, and acetyl-CoA to UDP-N-acetylglucosamine [Mengin-Lecreulx, D., & van Heijenoort, J. (1994) J. Bacteriol. 176, 5788-5795], a fundamental precursor in bacterial peptidoglycan biosynthesis and the source of activated N-acetylglucosamine in lipopolysaccharide biosynthesis in Gram-negative bacteria. In the work described here, the GlmU protein and truncation variants of GlmU (N- and C-terminal) were purified and kinetically characterized for substrate specificity and reaction order. It was determined that the GlmU protein first catalyzed acetyltransfer followed by uridylyltransfer. The N-terminal portion of the enzyme was capable of only uridylyltransfer, and the C-terminus catalyzed only acetyltransfer. GlmU demonstrated a 12-fold kinetic preference (kcat/Km, 3.1 x 10(5) versus 2.5 x 10(4) L.mol-1.s-1) for acetyltransfer from acetyl-CoA to glucosamine-1-P as compared to UDP-glucosamine. No detectable uridylyltransfer from UTP to glucosamine-1-P was observed in the presence of GlmU; however, the enzyme was competent in catalyzing the formation of UDP-N-acetylglucosamine from UTP and N-acetylglucosamine-1-P (kcat/Km 1.2 x 10(6) L.mol-1.s-1). A two active site model for the GlmU protein was indicated both by domain dissection experiments and by assay of the bifunctional reaction. Kinetic studies demonstrated that a pre-steady-state lag in the production of UDP-N-acetylglucosamine from acetyl-CoA, UTP, and glucosamine-1-P was due to the release and accumulation of steady-state levels of the intermediate N-acetylglucosamine-1-P. << Less
Biochemistry 35:579-585(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Structure of the Escherichia coli glmU pyrophosphorylase and acetyltransferase active sites.
Olsen L.R., Roderick S.L.
N-Acetylglucosamine-1-PO(4) uridyltransferase (GlmU) is a trimeric bifunctional enzyme that catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-GlcNAc. The X-ray crystal structure of Escherichia coli GlmU in complex with UDP-GlcNAc and CoA has been determined to ... >> More
N-Acetylglucosamine-1-PO(4) uridyltransferase (GlmU) is a trimeric bifunctional enzyme that catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-GlcNAc. The X-ray crystal structure of Escherichia coli GlmU in complex with UDP-GlcNAc and CoA has been determined to 2.1 A resolution and reveals a two-domain architecture that is responsible for these two reactions. The C-terminal domain is responsible for the CoA-dependent acetylation of Glc-1-PO(4) to GlcNAc-1-PO(4) and displays the longest left-handed parallel beta-helix observed to date. The acetyltransferase active site defined by the binding site for CoA makes use of residues from all three subunits and is positioned beneath an open cavity large enough to accommodate the Glc-1-PO(4) acetyl acceptor. The N-terminal domain catalyzes uridyl transfer from UTP to GlcNAc-1-PO(4) to form the final products UDP-GlcNAc and pyrophosphate. This domain is composed of a central seven-stranded beta-sheet surrounded by six alpha-helices in a Rossmann fold-like topology. A Co(2+) ion binds to just one of the two independent pyrophosphorylase active sites present in the crystals studied here, each of which nonetheless binds UDP-GlcNAc. The conformational changes of the enzyme and sugar nucleotide that accompany metal binding may provide a window into the structural dynamics that accompany catalysis. << Less
Biochemistry 40:1913-1921(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products.
Olsen L.R., Vetting M.W., Roderick S.L.
The biosynthesis of UDP-GlcNAc in bacteria is carried out by GlmU, an essential bifunctional uridyltransferase that catalyzes the CoA-dependent acetylation of GlcN-1-PO(4) to form GlcNAc-1-PO(4) and its subsequent condensation with UTP to form pyrophosphate and UDP-GlcNAc. As a metabolite, UDP-Glc ... >> More
The biosynthesis of UDP-GlcNAc in bacteria is carried out by GlmU, an essential bifunctional uridyltransferase that catalyzes the CoA-dependent acetylation of GlcN-1-PO(4) to form GlcNAc-1-PO(4) and its subsequent condensation with UTP to form pyrophosphate and UDP-GlcNAc. As a metabolite, UDP-GlcNAc is situated at a branch point leading to the biosynthesis of lipopolysaccharide and peptidoglycan. Consequently, GlmU is regarded as an important target for potential antibacterial agents. The crystal structure of the Escherichia coli GlmU acetyltransferase active site has been determined in complexes with acetyl-CoA, CoA/GlcN-1-PO(4), and desulpho-CoA/GlcNAc-1-PO(4). These structures reveal the enzyme groups responsible for binding the substrates. A superposition of these complex structures suggests that the 2-amino group of GlcN-1-PO(4) is positioned in proximity to the acetyl-CoA to facilitate direct attack on its thioester by a ternary complex mechanism. << Less
Protein Sci. 16:1230-1235(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.