Enzymes
| UniProtKB help_outline | 965 proteins |
| Enzyme class help_outline |
|
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
a [oligopeptide]
Identifier
RHEA-COMP:10531
Reactive part
help_outline
- Name help_outline an L-α amino acid residue Identifier CHEBI:83228 Charge 0 Formula C2H2NOR SMILEShelp_outline [*][C@H](N-*)C(-*)=O 2D coordinates Mol file for the small molecule Search links Involved in 600 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,328 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 865 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,029 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:14429 | RHEA:14430 | RHEA:14431 | RHEA:14432 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Identification of a lysosomal peptide transport system induced during dendritic cell development.
Demirel O., Waibler Z., Kalinke U., Grunebach F., Appel S., Brossart P., Hasilik A., Tampe R., Abele R.
The delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for pept ... >> More
The delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for peptide loading of MHC class I molecules in the endoplasmic reticulum, TAP-independent translocation pathways have been proposed but not identified so far. Based on its overlapping substrate specificity with TAP, we herein investigated the ABC transporter ABCB9, also named TAP-like (TAPL). Remarkably, TAPL expression is strongly induced during differentiation of monocytes to dendritic cells and to macrophages. TAPL does not, however, restore MHC class I surface expression in TAP-deficient cells, demonstrating that TAPL alone or in combination with single TAP subunits does not form a functional transport complex required for peptide loading of MHC I in the endoplasmic reticulum. In fact, by using quantitative immunofluorescence and subcellular fractionation, TAPL was detected in the lysosomal compartment co-localizing with the lysosome-associated membrane protein LAMP-2. By in vitro assays, we demonstrate a TAPL-specific translocation of peptides into isolated lysosomes, which strictly requires ATP hydrolysis. These results suggest a mechanism by which antigenic peptides have access to the lysosomal compartment in professional antigen-presenting cells. << Less
-
Peptide translocation by the lysosomal ABC transporter TAPL is regulated by coupling efficiency and activation energy.
Bock C., Zollmann T., Lindt K.A., Tampe R., Abele R.
The lysosomal polypeptide transporter TAPL belongs to the superfamily of ATP-binding cassette transporters. TAPL forms a homodimeric transport complex, which translocates oligo- and polypeptides into the lumen of lysosomes driven by ATP hydrolysis. Although the structure and the function of ABC tr ... >> More
The lysosomal polypeptide transporter TAPL belongs to the superfamily of ATP-binding cassette transporters. TAPL forms a homodimeric transport complex, which translocates oligo- and polypeptides into the lumen of lysosomes driven by ATP hydrolysis. Although the structure and the function of ABC transporters were intensively studied in the past, details about the single steps of the transport cycle are still elusive. Therefore, we analyzed the coupling of peptide binding, transport and ATP hydrolysis for different substrate sizes. Although longer and shorter peptides bind with the same affinity and are transported with identical K<sub>m</sub> values, they differ significantly in their transport rates. This difference can be attributed to a higher activation energy for the longer peptide. TAPL shows a basal ATPase activity, which is inhibited in the presence of longer peptides. Uncoupling between ATP hydrolysis and peptide transport increases with peptide length. Remarkably, also the type of nucleotide determines the uncoupling. While GTP is hydrolyzed as good as ATP, peptide transport is significantly reduced. In conclusion, TAPL does not differentiate between transport substrates in the binding process but during the following steps in the transport cycle, whereas, on the other hand, not only the coupling efficiency but also the activation energy varies depending on the size of peptide substrate. << Less
-
Peptide specificity and lipid activation of the lysosomal transport complex ABCB9 (TAPL).
Zhao C., Haase W., Tampe R., Abele R.
The lysosomal ABC transporter associated with antigen processing-like (TAPL, ABCB9) acts as an ATP-dependent polypeptide transporter with broad length selectivity. To characterize in detail its substrate specificity, a procedure for functional reconstitution of human TAPL was developed. By intensi ... >> More
The lysosomal ABC transporter associated with antigen processing-like (TAPL, ABCB9) acts as an ATP-dependent polypeptide transporter with broad length selectivity. To characterize in detail its substrate specificity, a procedure for functional reconstitution of human TAPL was developed. By intensive screening of detergents, ideal solubilization conditions were evolved with respect to efficiency, long term stability, and functionality of TAPL. TAPL was isolated in a two-step procedure with high purity and, subsequently, reconstituted into proteoliposomes. The peptide transport activity of reconstituted TAPL strongly depends on the lipid composition. With the help of combinatorial peptide libraries, the key positions of the peptides were localized to the N- and C-terminal residues with respect to peptide transport. At both ends, TAPL favors positively charged, aromatic, or hydrophobic residues and disfavors negatively charged residues as well as asparagine and methionine. Besides specific interactions of both terminal residues, electrostatic interactions are important, since peptides with positive net charge are more efficiently transported than negatively charged ones. << Less
-
Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9).
Wolters J.C., Abele R., Tampe R.
The transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) belongs to the ATP-binding cassette transporter family, which translocates a vast variety of solutes across membranes. The function of this half-size transporter has not yet been determined. Here, we show that TAPL forms a ... >> More
The transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) belongs to the ATP-binding cassette transporter family, which translocates a vast variety of solutes across membranes. The function of this half-size transporter has not yet been determined. Here, we show that TAPL forms a homodimeric complex, which translocates peptides across the membrane. Peptide transport strictly requires ATP hydrolysis. The transport follows Michaelis-Menten kinetics with low affinity and high capacity. Different nucleotides bind and energize the transport with a slight predilection for purine bases. The peptide specificity is very broad, ranging from 6-mer up to at least 59-mer peptides with a preference for 23-mers. Peptides are recognized via their backbone, including the free N and C termini as well as side chain interactions. Although related to TAP, TAPL is unique as far as its interaction partners, transport properties, and substrate specificities are concerned, thus excluding that TAPL is part of the peptide-loading complex in the classic route of antigen processing via major histocompatibility complex class I molecules. << Less