RHEA:14573
Enzymes help_outline | 3,730 proteins (UniProtKB) |
Enzyme class help_outline |
Reaction participants Show >> << Hide
- Name help_outline D-glucarate Identifier CHEBI:30612 (Beilstein: 3909239) help_outline Charge -2 Formula C6H8O8 InChIKeyhelp_outline DSLZVSRJTYRBFB-LLEIAEIESA-L SMILEShelp_outline O[C@@H]([C@H](O)[C@@H](O)C([O-])=O)[C@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-dehydro-4-deoxy-D-glucarate Identifier CHEBI:42819 Charge -2 Formula C6H6O7 InChIKeyhelp_outline QUURPCHWPQNNGL-ZAFYKAAXSA-L SMILEShelp_outline O[C@@H](CC(=O)C([O-])=O)[C@@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 5,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Links to other resources
RHEA:14573 | RHEA:14574 | RHEA:14575 | RHEA:14576 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Citations
-
New insights into the alternative D-glucarate degradation pathway.
Aghaie A., Lechaplais C., Sirven P., Tricot S., Besnard-Gonnet M., Muselet D., de Berardinis V., Kreimeyer A., Gyapay G., Salanoubat M., Perret A.
Although the D-glucarate degradation pathway is well characterized in Escherichia coli, genetic and biochemical information concerning the alternative pathway proposed in Pseudomonas species and Bacillus subtilis remains incomplete. Acinetobacter baylyi ADP1 is a Gram-negative soil bacterium posse ... >> More
Although the D-glucarate degradation pathway is well characterized in Escherichia coli, genetic and biochemical information concerning the alternative pathway proposed in Pseudomonas species and Bacillus subtilis remains incomplete. Acinetobacter baylyi ADP1 is a Gram-negative soil bacterium possessing the alternative pathway and able to grow using D-glucarate as the only carbon source. Based on the annotation of its sequenced genome (1), we have constructed a complete collection of singlegene deletion mutants (2). High throughput profiling for growth on a minimal medium containing D-glucarate as the only carbon source for approximately 2450 mutants led to the identification of the genes involved in D-glucarate degradation. Protein purification after recombinant production in E. coli allowed us to reconstitute the enzymatic pathway in vitro. We describe here the kinetic characterization of D-glucarate dehydratase, d-5-keto-4-deoxyglucarate dehydratase, and of cooperative alpha-ketoglutarate semialdehyde dehydrogenase. Transcription and expression analyses of the genes involved in D-glucarate metabolism within a single organism made it possible to access information regarding the regulation of this pathway for the first time. << Less
J. Biol. Chem. 283:15638-15646(2008) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.