Reaction participants Show >> << Hide
- Name help_outline coproporphyrinogen III Identifier CHEBI:57309 Charge -4 Formula C36H40N4O8 InChIKeyhelp_outline NIUVHXTXUXOFEB-UHFFFAOYSA-J SMILEShelp_outline Cc1c2Cc3[nH]c(Cc4[nH]c(Cc5[nH]c(Cc([nH]2)c1CCC([O-])=O)c(C)c5CCC([O-])=O)c(C)c4CCC([O-])=O)c(CCC([O-])=O)c3C 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 854 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5'-deoxyadenosine Identifier CHEBI:17319 (CAS: 4754-39-6) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline XGYIMTFOTBMPFP-KQYNXXCUSA-N SMILEShelp_outline C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 69 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-methionine Identifier CHEBI:57844 Charge 0 Formula C5H11NO2S InChIKeyhelp_outline FFEARJCKVFRZRR-BYPYZUCNSA-N SMILEShelp_outline CSCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 121 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline protoporphyrinogen IX Identifier CHEBI:57307 Charge -2 Formula C34H38N4O4 InChIKeyhelp_outline UHSGPDMIQQYNAX-UHFFFAOYSA-L SMILEShelp_outline Cc1c2Cc3[nH]c(Cc4[nH]c(Cc5[nH]c(Cc([nH]2)c1CCC([O-])=O)c(CCC([O-])=O)c5C)c(C=C)c4C)c(C=C)c3C 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15425 | RHEA:15426 | RHEA:15427 | RHEA:15428 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes.
Layer G., Moser J., Heinz D.W., Jahn D., Schubert W.-D.
'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolut ... >> More
'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolution. HemN catalyzes the essential conversion of coproporphyrinogen III to protoporphyrinogen IX during heme biosynthesis. HemN binds a 4Fe-4S cluster through three cysteine residues conserved in all Radical SAM enzymes. A juxtaposed SAM coordinates the fourth Fe ion through its amide nitrogen and carboxylate oxygen. The SAM sulfonium sulfur is near both the Fe (3.5 A) and a neighboring sulfur of the cluster (3.6 A), allowing single electron transfer from the 4Fe-4S cluster to the SAM sulfonium. SAM is cleaved yielding a highly oxidizing 5'-deoxyadenosyl radical. HemN, strikingly, binds a second SAM immediately adjacent to the first. It may thus successively catalyze two propionate decarboxylations. The structure of HemN reveals the cofactor geometry required for Radical SAM catalysis and sets the stage for the development of inhibitors with antibacterial function due to the uniquely bacterial occurrence of the enzyme. << Less
-
Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium Synechocystis sp. PCC 6803.
Goto T., Aoki R., Minamizaki K., Fujita Y.
Coproporphyrinogen III oxidase (CPO) catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX in heme biosynthesis and is shared in chlorophyll biosynthesis in photosynthetic organisms. There are two analogous CPOs, oxygen-dependent (HemF) and oxygen-independ ... >> More
Coproporphyrinogen III oxidase (CPO) catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX in heme biosynthesis and is shared in chlorophyll biosynthesis in photosynthetic organisms. There are two analogous CPOs, oxygen-dependent (HemF) and oxygen-independent (HemN) CPOs, in various organisms. Little information on cyanobacterial CPOs has been available to date. In the genome of the cyanobacterium Synechocystis sp. PCC 6803 there is one hemF-like gene, sll1185, and two hemN-like genes, sll1876 and sll1917. The three genes were overexpressed in Escherichia coli and purified to homogeneity. Sll1185 showed CPO activity under both aerobic and anaerobic conditions. While Sll1876 and Sll1917 showed absorbance spectra indicative of Fe-S proteins, only Sll1876 showed CPO activity under anaerobic conditions. Three mutants lacking one of these genes were isolated. The Deltasll1185 mutant failed to grow under aerobic conditions, with accumulation of coproporphyrin III. This growth defect was restored by cultivation under micro-oxic conditions. The growth of the Deltasll1876 mutant was significantly slower than that of the wild type under micro-oxic conditions, while it grew normally under aerobic conditions. Coproporphyrin III was accumulated at a low but significant level in the Deltasll1876 mutant grown under micro-oxic conditions. There was no detectable phenotype in Deltasll1917 under the conditions we examined. These results suggested that sll1185 encodes HemF as the sole CPO under aerobic conditions and that sll1876 encodes HemN operating under micro-oxic conditions, together with HemF. Such a differential operation of CPOs would ensure the stable supply of tetrapyrrole pigments under environments where oxygen levels fluctuate greatly. << Less
-
Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli.
Layer G., Verfuerth K., Mahlitz E., Jahn D.
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a mo ... >> More
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a monomeric protein with a native M(r) = 52,000 +/-5,000. A newly established anaerobic enzyme assay was used to demonstrate for the first time in vitro coproporphyrinogen-III oxidase activity for recombinant purified HemN. The enzyme requires S-adenosyl-l-methionine (SAM), NAD(P)H, and additional cytoplasmatic components for catalysis. An oxygen-sensitive iron-sulfur cluster was identified by absorption spectroscopy and iron analysis. Cysteine residues Cys(62), Cys(66), and Cys(69), which are part of the conserved CXXXCXXC motif found in all HemN proteins, are essential for iron-sulfur cluster formation and enzyme function. Completely conserved residues Tyr(56) and His(58), localized closely to the cysteine-rich motif, were found to be important for iron-sulfur cluster integrity. Mutation of Gly(111) and Gly(113), which are part of the potential GGGTP S-adenosyl-l-methionine binding motif, completely abolished enzymatic function. Observed functional properties in combination with a recently published computer-based enzyme classification (Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and Miller, N. E. (2001) Nucleic Acids Res. 29, 1097-1106) identifies HemN as "Radical SAM enzyme." An appropriate enzymatic mechanism is suggested. << Less