Reaction participants Show >> << Hide
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (Beilstein: 3664503; CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 423 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,675 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline taurine Identifier CHEBI:507393 Charge 0 Formula C2H7NO3S InChIKeyhelp_outline XOAAWQZATWQOTB-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline aminoacetaldehyde Identifier CHEBI:58213 Charge 1 Formula C2H6NO InChIKeyhelp_outline LYIIBVSRGJSHAV-UHFFFAOYSA-O SMILEShelp_outline [NH3+]CC=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (Beilstein: 1863859; CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 329 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sulfite Identifier CHEBI:17359 (CAS: 14265-45-3) help_outline Charge -2 Formula O3S InChIKeyhelp_outline LSNNMFCWUKXFEE-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 56 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:15909 | RHEA:15910 | RHEA:15911 | RHEA:15912 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
M-CSA help_outline |
Publications
-
X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates.
Elkins J.M., Ryle M.J., Clifton I.J., Dunning Hotopp J.C., Lloyd J.S., Burzlaff N.I., Baldwin J.E., Hausinger R.P., Roach P.L.
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme Fe(II) oxygenase, catalyses the conversion of taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde concurrent with the conversion of alpha-ketoglutarate (alphaKG) to succinate and CO(2). The enzyme allows Escherichia coli to u ... >> More
Taurine/alpha-ketoglutarate dioxygenase (TauD), a non-heme Fe(II) oxygenase, catalyses the conversion of taurine (2-aminoethanesulfonate) to sulfite and aminoacetaldehyde concurrent with the conversion of alpha-ketoglutarate (alphaKG) to succinate and CO(2). The enzyme allows Escherichia coli to use taurine, widely available in the environment, as an alternative sulfur source. Here we describe the X-ray crystal structure of TauD complexed to Fe(II) and both substrates, alphaKG and taurine. The tertiary structure and fold of TauD are similar to those observed in other enzymes from the broad family of Fe(II)/alphaKG-dependent oxygenases, with closest structural similarity to clavaminate synthase. Using the TauD coordinates, a model was determined for the closely related enzyme 2,4-dichlorophenoxyacetate/alphaKG dioxygenase (TfdA), supporting predictions derived from site-directed mutagenesis and other studies of that biodegradative protein. The TauD structure and TfdA model define the metal ligands and the positions of nearby aromatic residues that undergo post-translational modifications involving self-hydroxylation reactions. The substrate binding residues of TauD were identified and those of TfdA predicted. These results, along with sequence alignment information, reveal how TauD selects a tetrahedral substrate anion in preference to the planar carboxylate selected by TfdA, providing insight into the mechanism of enzyme catalysis. << Less
-
Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli.
Eichhorn E., van der Ploeg J.R., Kertesz M.A., Leisinger T.
The Escherichia coli tauD gene is required for the utilization of taurine (2-aminoethanesulfonic acid) as a sulfur source and is expressed only under conditions of sulfate starvation. The sequence relatedness of the TauD protein to the alpha-ketoglutarate-dependent 2,4-dichlorophenoxyacetate dioxy ... >> More
The Escherichia coli tauD gene is required for the utilization of taurine (2-aminoethanesulfonic acid) as a sulfur source and is expressed only under conditions of sulfate starvation. The sequence relatedness of the TauD protein to the alpha-ketoglutarate-dependent 2,4-dichlorophenoxyacetate dioxygenase of Alcaligenes eutrophus suggested that TauD is an alpha-ketoglutarate-dependent dioxygenase catalyzing the oxygenolytic release of sulfite from taurine (van der Ploeg, J. R., Weiss, M. A., Saller, E., Nashimoto, H., Saito, N., Kertesz, M. A., and Leisinger, T. (1996) J. Bacteriol. 178, 5438-5446). TauD was overexpressed in E. coli to approximately 70% of the total soluble protein and purified to apparent homogeneity by a simple two-step procedure. The apparent Mr of 81,000 of the native protein and the subunit Mr of 37,400 were consistent with a homodimeric structure. The pure enzyme converted taurine to sulfite and aminoacetaldehyde, which was identified by high pressure liquid chromatography after enzymatic conversion to ethanolamine. The reaction also consumed equimolar amounts of oxygen and alpha-ketoglutarate; ferrous iron was absolutely required for activity; and ascorbate stimulated the reaction. The properties and amino acid sequence of this enzyme thus define it as a new member of the alpha-ketoglutarate-dependent dioxygenase family. The pure enzyme showed maximal activity at pH 6.9 and retained activity on storage at -20 degrees C for several weeks. Taurine (Km = 55 microM) was the preferred substrate, but pentanesulfonic acid, 3-(N-morpholino)propanesulfonic acid, and 1,3-dioxo-2-isoindolineethanesulfonic acid were also desulfonated at significant rates. Among the cosubstrates tested, only alpha-ketoglutarate (Km = 11 microM) supported significant dioxygenase activity. << Less