Enzymes
UniProtKB help_outline | 12,230 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline IMP Identifier CHEBI:58053 Charge -2 Formula C10H11N4O8P InChIKeyhelp_outline GRSZFWQUAKGDAV-KQYNXXCUSA-L SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])([O-])=O)O[C@H]([C@@H]1O)n1cnc2c1nc[nH]c2=O 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,262 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 527 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GMP Identifier CHEBI:58115 Charge -2 Formula C10H12N5O8P InChIKeyhelp_outline RQFCJASXJCIDSX-UUOKFMHZSA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,256 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:17185 | RHEA:17186 | RHEA:17187 | RHEA:17188 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Cofactor mobility determines reaction outcome in the IMPDH and GMPR (beta-alpha)8 barrel enzymes.
Patton G.C., Stenmark P., Gollapalli D.R., Sevastik R., Kursula P., Flodin S., Schuler H., Swales C.T., Eklund H., Himo F., Nordlund P., Hedstrom L.
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family ha ... >> More
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia. << Less
-
Crystal structure of human guanosine monophosphate reductase 2 (GMPR2) in complex with GMP.
Li J., Wei Z., Zheng M., Gu X., Deng Y., Qiu R., Chen F., Ji C., Gong W., Xie Y., Mao Y.
Guanosine monophosphate reductase (GMPR) catalyzes the irreversible and NADPH-dependent reductive deamination of GMP to IMP, and plays a critical role in re-utilization of free intracellular bases and purine nucleosides. Here, we report the first crystal structure of human GMP reductase 2 (hGMPR2) ... >> More
Guanosine monophosphate reductase (GMPR) catalyzes the irreversible and NADPH-dependent reductive deamination of GMP to IMP, and plays a critical role in re-utilization of free intracellular bases and purine nucleosides. Here, we report the first crystal structure of human GMP reductase 2 (hGMPR2) in complex with GMP at 3.0 A resolution. The protein forms a tetramer composed of subunits adopting the ubiquitous (alpha/beta)8 barrel fold. Interestingly, the substrate GMP is bound to hGMPR2 through interactions with Met269, Ser270, Arg286, Ser288, and Gly290; this makes the conformation of the adjacent flexible binding region (residues 268-289) fixed, much like a door on a hinge. Structure comparison and sequence alignment analyses show that the conformation of the active site loop (residues 179-187) is similar to those of hGMPR1 and inosine monophosphate dehydrogenases (IMPDHs). We propose that Cys186 is the potential active site, and that the conformation of the loop (residues 129-133) suggests a preference for the coenzyme NADPH over NADH. This structure provides important information towards understanding the functions of members of the GMPR family. << Less
-
NADPH-dependent GMP reductase isoenzyme of human (GMPR2). Expression, purification, and kinetic properties.
Deng Y., Wang Z., Ying K., Gu S., Ji C., Huang Y., Gu X., Wang Y., Xu Y., Li Y., Xie Y., Mao Y.
GMP reductase (EC 1.6.6.8) is the only known metabolic step by which guanine nucleotides can be converted to the pivotal precursor of both adenine and guanine nucleotides. Human GMP reductase has been previously partially purified from erythrocytes and a chromosome 6-linked cDNA has been identifie ... >> More
GMP reductase (EC 1.6.6.8) is the only known metabolic step by which guanine nucleotides can be converted to the pivotal precursor of both adenine and guanine nucleotides. Human GMP reductase has been previously partially purified from erythrocytes and a chromosome 6-linked cDNA has been identified to correspond for encoding human GMP reductase. Here, we reported a distinct cDNA for human GMP reductase isoenzyme isolated from a human fetal brain library, and the GenBank accession number is AF419346. The deduced protein shows 90% identity with human GMP reductase reported (named GMPR1 compared with GMPR2 of this paper) and 69% with E. coli GMP reductase. Comparison of GMPR2 cDNA sequence with human genome indicates the corresponding gene spans about 6.6kb on chromosome 14, which encodes 348 amino acid residues. Northern hybridization analysis indicates a differential and disproportionate expression of mRNAs for GMPR1 and GMPR2, suggesting the existence of distinct molecular species of GMP reductase in human. The apparent Km of GMPR2 for NADPH and GMP are 26.6 and 17.4 microM, respectively. This is the first report suggesting the existence of two distinct types of human GMP reductase molecular species, which can be used to explain the bimodal saturation curve noted with the purified human erythrocyte GMP reductase. << Less
Int. J. Biochem. Cell Biol. 34:1035-1050(2002) [PubMed] [EuropePMC]
-
Dynamic Characteristics of Guanosine-5'-monophosphate Reductase Complexes Revealed by High-Resolution <sup>31</sup>P Field-Cycling NMR Relaxometry.
Rosenberg M.M., Redfield A.G., Roberts M.F., Hedstrom L.
The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling <su ... >> More
The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling <sup>31</sup>P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the <sup>31</sup>P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP<sup>+</sup>, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP<sup>+</sup>. The presence of D<sub>2</sub>O perturbed the relaxation of the <sup>31</sup>P nuclei in E·IMP·NADP<sup>+</sup> but not in E·GMP·NADP<sup>+</sup>, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of V<sub>max</sub> by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle. << Less
-
Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry.
Rosenberg M.M., Redfield A.G., Roberts M.F., Hedstrom L.
Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring <sup>31</sup>P relaxation rates over a large magnetic field range ... >> More
Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring <sup>31</sup>P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP<sup>+</sup> complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP<sup>+</sup> and E·GMP·NADP<sup>+</sup> complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP<sup>+</sup> complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis. << Less
-
Guanosine 5'-monophosphate reductase from Leishmania donovani. A possible chemotherapeutic target.
Spector T., Jones T.E.
GMP reductase was highly purified from promastigotes of Leishmania donovani by chromatography on a single DEAE-cellulose column. Bimodal substrate saturation curves resulted in a 1/v versus 1/[GMP] plot that curved downward above 40 microM GMP. The kinetic constants were, therefore, obtained with ... >> More
GMP reductase was highly purified from promastigotes of Leishmania donovani by chromatography on a single DEAE-cellulose column. Bimodal substrate saturation curves resulted in a 1/v versus 1/[GMP] plot that curved downward above 40 microM GMP. The kinetic constants were, therefore, obtained with GMP below this concentration. The K'm for GMP was 21 microM at pH 6.9. The enzyme was very sensitive to activation by GTP. At 20 microM GMP, a maximum of 600% activation occurred at 100 microM GTP. Half-maximal activation occurred at 8 microM GTP. GTP at 100 microM did not affect the K'm for GMP but did increase its V'max by 7-fold. Xanthosine monophosphate (XMP) and IMP analogs served equally well as competitive inhibitors versus GMP. The inhibition by the analogs and the activation by GTP were mutually antagonistic processes. The inhibition by the IMP analogs, allopurinol nucleotide and thiopurinol nucleotide is of chemotherapeutic interest because these compounds were shown previously to be produced in Leishmania from the anti-leishmanial agents allopurinol and thiopurinol. These nucleotides were 100- and 20-fold, respectively, more potent inhibitors of GMP reductase from L. donovani than of the corresponding enzyme from human erythrocytes. << Less