Reaction participants Show >> << Hide
- Name help_outline arsenite Identifier CHEBI:29242 Charge -1 Formula AsH2O3 InChIKeyhelp_outline AQLMHYSWFMLWBS-UHFFFAOYSA-N SMILEShelp_outline O[As](O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 3,001 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline arsenate Identifier CHEBI:48597 Charge -2 Formula AsHO4 InChIKeyhelp_outline DJHGAFSJWGLOIV-UHFFFAOYSA-L SMILEShelp_outline O[As]([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,929 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:18449 | RHEA:18450 | RHEA:18451 | RHEA:18452 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Enzymatic reduction of arsenic compounds in mammalian systems: reduction of arsenate to arsenite by human liver arsenate reductase.
Radabaugh T.R., Aposhian H.V.
An arsenate (As(V)) reductase has been partially purified from human liver. Its apparent molecular mass is approximately 72 kDa. The enzyme required a thiol and a heat stable cofactor for activity. The cofactor is less than 3 kDa in size. The thiol requirement can be satisfied by dithiothreitol (D ... >> More
An arsenate (As(V)) reductase has been partially purified from human liver. Its apparent molecular mass is approximately 72 kDa. The enzyme required a thiol and a heat stable cofactor for activity. The cofactor is less than 3 kDa in size. The thiol requirement can be satisfied by dithiothreitol (DTT). However, the extent of stimulation of reductase activity by glutathione, thioredoxin, or reduced lipoic acid was negligible compared to that of DTT. The heat stable cofactor does not appear to be Cu(2+), Mn(2+), Zn(2+), Mg(2+), or Ca(2+). The enzyme does not reduce monomethylarsonic acid (MMA(V)). The isolation and characterization of this enzyme demonstrates that in humans, the reduction of arsenate to arsenite is enzymatically catalyzed and is not solely the result of chemical reduction by glutathione as has been proposed in the past. << Less
Chem Res Toxicol 13:26-30(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis.
Krafft T., Macy J.M.
Chrysiogenes arsenatis is the only bacterium known that respires anaerobically using arsenate as the terminal electron acceptor and the respiratory substrate acetate as the electron donor. During growth, the arsenate is reduced to arsenite; the reduction is catalyzed by an arsenate reductase. This ... >> More
Chrysiogenes arsenatis is the only bacterium known that respires anaerobically using arsenate as the terminal electron acceptor and the respiratory substrate acetate as the electron donor. During growth, the arsenate is reduced to arsenite; the reduction is catalyzed by an arsenate reductase. This study describes the purification and characterization of a respiratory arsenate reductase (Arr). The enzyme consists of two subunits with molecular masses of 87 kDa (ArrA) and 29 kDa (ArrB), and is a heterodimer alpha1beta1 with a native molecular mass of 123 kDa. The arsenate reductase contains molybdenum, iron, acid-labile sulfur and zinc as cofactor constituents. The Km of the enzyme for arsenate is 0.3 mM and the Vmax is 7013 micromol arsenate reduced x min(-1) x mg protein(-1). Nitrate, sulfate, selenate and fumarate cannot serve as alternative electron acceptors for the arsenate reductase. Synthesis of the protein is regulated, as arsenate must be present during growth for the enzyme to be fully induced. The N-terminus of ArrA is similar to a number of procaryotic molybdenum-containing polypeptides (e.g. the formate dehydrogenases H and N of Escherichia coli). The N-terminus of ArrB is similar to iron-sulfur proteins. The respiratory arsenate reductase of C. arsenatis is different from the non-respiratory arsenate reductases of E. coli and Staphylococcus aureus. << Less