Enzymes
| Enzyme class help_outline |
|
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline pregna-4,9(11)-diene-3,20-dione Identifier CHEBI:16744 Charge 0 Formula C21H28O2 InChIKeyhelp_outline LCXMRSLFWMMCAS-WRJHFWDFSA-N SMILEShelp_outline [H][C@@]12CCC3=CC(=O)CC[C@]3(C)C1=CC[C@]1(C)[C@H](CC[C@@]21[H])C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AH2 Identifier CHEBI:17499 Charge 0 Formula RH2 SMILEShelp_outline *([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 2,929 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 9,11α-epoxypregn-4-ene-3,20-dione Identifier CHEBI:17206 (Beilstein: 5763507) help_outline Charge 0 Formula C21H28O3 InChIKeyhelp_outline FFMULFMLARAIRH-OUZKAEIWSA-N SMILEShelp_outline [H][C@@]12CC[C@H](C(C)=O)[C@@]1(C)C[C@H]1O[C@@]11[C@@]2([H])CCC2=CC(=O)CC[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline A Identifier CHEBI:13193 Charge Formula R SMILEShelp_outline * 2D coordinates Mol file for the small molecule Search links Involved in 3,001 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:19557 | RHEA:19558 | RHEA:19559 | RHEA:19560 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Cryptoregiochemistry of the delta11-myristoyl-CoA desaturase involved in the biosynthesis of Spodoptera littoralis sex pheromone.
Pinilla A., Camps F., Fabrias G.
Many moth species biosynthesize their sex pheromones by the action of unique desaturases. These membrane-bound family of enzymes are especially interesting, since some of them produce (E)-unsaturated fatty acids either exclusively or along with the (Z)-isomer. In this article we present the first ... >> More
Many moth species biosynthesize their sex pheromones by the action of unique desaturases. These membrane-bound family of enzymes are especially interesting, since some of them produce (E)-unsaturated fatty acids either exclusively or along with the (Z)-isomer. In this article we present the first mechanistic study on one of these enzymes, namely, the Delta11-myristoyl-CoA desaturase of the moth Spodoptera littoralis. Intermolecular primary isotope effect determinations were performed in competition experiments. The unusual use of odd-number fatty acids, tridecanoic acid and deuterium-labeled tridecanoic acid, in these experiments showed the existence of a large isotope effect for the carbon-hydrogen bond cleavage at C11, but no isotope discrimination occurred in the removal of C12-H. The results of the competitive experiments are consistent with the hypothesis that this Delta11-desaturase involves a first slow, isotope-sensitive C11-H bond cleavage, with probable formation of an unstable intermediate, followed by a second fast C12-H bond removal. We suggest that a single enzyme may be responsible for the formation of both (Z)- and (E)-11-tetradecenoic acids by accommodating both gauche and anti conformers of the substrate, respectively. It is also possible that two mechanistically identical discrete enzymes are involved in each desaturation. In this case, the geometry of the resulting double bond would result from the different conformation adopted by the acyl substrate at each enzyme active site. << Less
Biochemistry 38:15272-15277(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Sex pheromone biosynthetic pathway in Spodoptera littoralis and its activation by a neurohormone.
Martinez T., Fabrias G., Camps F.
Deuterium-labeled fatty acids have been used to elucidate the sex pheromone biosynthetic pathway in Spodoptera littoralis. Label from palmitic acid was incorporated during the scotophase into all the pheromone acetates and their corresponding fatty acyl intermediates. (Z,E)-9,11-tetradecadienyl ac ... >> More
Deuterium-labeled fatty acids have been used to elucidate the sex pheromone biosynthetic pathway in Spodoptera littoralis. Label from palmitic acid was incorporated during the scotophase into all the pheromone acetates and their corresponding fatty acyl intermediates. (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone blend, is synthesized from palmitic acid via tetradecanoic acid, which, by the action of a specific (E)-11 desaturase and subsequently a (Z)-9 desaturase, is converted into (Z,E)-9,11-tetradecadienoate. By further reduction and acetylation, this compound leads to the dienne acetate. Deuterated precursors applied to the pheromone gland during the photophase were also incorporated into the pheromone. The percentage of labeled (Z,E)-9,11-tetradecadienyl acetate relative to natural compound was significantly higher during the light period. Label incorporation from different intermediates into the pheromone was stimulated by injection of brain-subesophageal ganglion extract during the photophase. The influence of the pheromone biosynthesis-activating neuropeptide on the biosynthetic pathway is discussed. << Less
J Biol Chem 265:1381-1387(1990) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
Comments
Published in: Navarro, I., Font, I., Fabrias, G. and Camps, F. Stereospecificity of the (