Enzymes
| Enzyme class help_outline |
|
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline orcinol Identifier CHEBI:16536 (CAS: 504-15-4) help_outline Charge 0 Formula C7H8O2 InChIKeyhelp_outline OIPPWFOQEKKFEE-UHFFFAOYSA-N SMILEShelp_outline Cc1cc(O)cc(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,136 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,3,5-trihydroxytoluene Identifier CHEBI:17185 (CAS: 767-81-7) help_outline Charge 0 Formula C7H8O3 InChIKeyhelp_outline GIGNQZIJYUEWTI-UHFFFAOYSA-N SMILEShelp_outline Cc1cc(O)cc(O)c1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,207 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:19601 | RHEA:19602 | RHEA:19603 | RHEA:19604 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01.
Ohta Y., Higgins I., Ribbons D.W.
Orcinol hydroxylase (EC 1.14.13.6), which catalyzes the first reaction of orcinol catabolism in Pseudomonas putida 01, has been purified to homogeneity, and crystallized. Orcinol hydroxylase catalyzes the hydroxylation of orcinol with equimolar consumption of O2 and NADH (or NADPH) to 2, 3, 5-trih ... >> More
Orcinol hydroxylase (EC 1.14.13.6), which catalyzes the first reaction of orcinol catabolism in Pseudomonas putida 01, has been purified to homogeneity, and crystallized. Orcinol hydroxylase catalyzes the hydroxylation of orcinol with equimolar consumption of O2 and NADH (or NADPH) to 2, 3, 5-trihydroxytoluene, which is nonenzymically oxidized to a quinone. The visible absorption spectrum of the enzyme shows maxima at 373 and 454 nm and a shoulder at 480 nm. FAD can be dissociated from the protein. Reconstitution of enzymic activity was achieved with FAD, and to a limited extent by FMN. The enzyme has a molecular weight of 63,000 to 68,000 and contains 1 mol of FAD per mol of protein. K-m values for the three substrates orcinol, NADH, and O2 are 0.03, 0.13, and 0.07mM, RESPECTIVELY. The molecular activity of the crystalline enzyme is 1560 min minus 1. In the absence of orcinol, NADH is only slowly oxidized with formation of H2O2. Several analogs of orcinol also serve as substrates for hydroxylation, namely resorcinol, 4-methylresorcinol, and 4-bromoresorcinol. Other analogs, m-cresol, m-ethylphenol, 4-ethylresorcinol, and phloroglucinol, mimic orcinol as effectors, in that they (a) accelerate electron flow from NADH to the flavin and (b) decrease the apparent K-m for NADH but not to the same extent as the substrates that are hydroxylated. The latter compounds are not hydroxylated. Instead H2O2 accumulates as the only product of O2 reduction. The enzyme therefore behaves either as a hydroxylase or an oxidase. The ratio of hydroxylase to oxidase activities of the enzyme is decreased by an increase in the temperature of incubation; at 60 degrees the reaction with orcinol is almost 50% uncoupled from hydroxylation. The apparent K-m values for the effectors are in good agreement with the D-D values obtained for orcinol, resorcinol, and m-cresol. K-D values were obtained by measurement of the effector-induced perturbations of the visible absorption spectrum of the flavoprotein by difference absorption spectroscopy. The circular dichroism spectrum of orcinol hydroxylase is also altered in the presence of orcinol. The participation of the flavin in the over-all reaction is demonstrated by its rapid reduction under anaerobic conditions by NADH in the presence or orcinol, resorcinol, or m-cresol. Subsequent introduction of oxygen restores the oxidized form and yields H2O2 when m-cresol is the effector, but not when orcinol is the effector. Transfer of reducing equivalents from the reduced flavoprotein to free FAD may also occur. Reduction of orcinol hydroxylase by NADH in the absence of an effector is 10-4-fold slower than in the presence of an effector. The minimal structural requirements for effectors appear to be a 1,3-dihydroxy or 1-alkyl-3-hydorxybenzene, but only the former are substrates for hydroxylation. << Less
-
Crystallization of orcinol hydroxylase from Pseudomonas putida.
Otha Y., Ribbons D.W.
-
The stereochemistry of NADH utilization by the flavoenzyme monooxygenase orcinol hydroxylase.
Ryerson C.C., Walsh C.
Ribbons et al. (Ribbons, D.W., Ohta, Y., and Higgins, I.J. (1972) in Molecular Basis of Electron Transport, Miami Winter Symposic Series (Schultz, J., and Cameron, B.F., eds) Vol. 4, pp. 251-274, Academic Press, New York) presented a preliminary report that the flavoenzyme monooxygenase orcinol hy ... >> More
Ribbons et al. (Ribbons, D.W., Ohta, Y., and Higgins, I.J. (1972) in Molecular Basis of Electron Transport, Miami Winter Symposic Series (Schultz, J., and Cameron, B.F., eds) Vol. 4, pp. 251-274, Academic Press, New York) presented a preliminary report that the flavoenzyme monooxygenase orcinol hydroxylase shows mixed type 4R, 4S stereospecificity with respect to dihydronicotinamide oxidation when resorcinol and m-cresol were used as substrate analogs. With the natural substrate orcinol, 4R chirality was maintained. In kinetic isotope experiments reported here, we demonstrate in fact that orcinol hydroxylase maintains 4R stereospecificity with respect to dihydronicotinamide oxidation with all three substrates, orcinol, resorcinol, and m-cresol. Deuterium and tritium kinetic isotope effects were detected under Vmax conditions with (4R)-[4-2H]-, and (4R)-[4-3H]NADH for all three substrates. No isotope effect was observed with (4S)-[4-2H]NADH and tritium labilization from assays with (4S)-[4-3H]-NADH was negligible in all cases. << Less