Enzymes
| UniProtKB help_outline | 8,292 proteins |
Reaction participants Show >> << Hide
- Name help_outline GTP Identifier CHEBI:37565 (Beilstein: 5211792) help_outline Charge -4 Formula C10H12N5O14P3 InChIKeyhelp_outline XKMLYUALXHKNFT-UUOKFMHZSA-J SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 100 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 354 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,623 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinyl-CoA Identifier CHEBI:57292 Charge -5 Formula C25H35N7O19P3S InChIKeyhelp_outline VNOYUJKHFWYWIR-ITIYDSSPSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 43 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP Identifier CHEBI:58189 Charge -3 Formula C10H12N5O11P2 InChIKeyhelp_outline QGWNDRXFNXRZMB-UUOKFMHZSA-K SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 197 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,041 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:22120 | RHEA:22121 | RHEA:22122 | RHEA:22123 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline | ||||
| Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase.
Joyce M.A., Fraser M.E., Brownie E.R., James M.N., Bridger W.A., Wolodko W.T.
Succinyl-CoA synthetase (SCS) catalyzes the reversible interchange of purine nucleoside diphosphate, succinyl-CoA, and Pi with purine nucleoside triphosphate, succinate, and CoA via a phosphorylated histidine (H246alpha) intermediate. Two potential nucleotide-binding sites were predicted in the be ... >> More
Succinyl-CoA synthetase (SCS) catalyzes the reversible interchange of purine nucleoside diphosphate, succinyl-CoA, and Pi with purine nucleoside triphosphate, succinate, and CoA via a phosphorylated histidine (H246alpha) intermediate. Two potential nucleotide-binding sites were predicted in the beta-subunit, and have been differentiated by photoaffinity labeling with 8-N3-ATP and by site-directed mutagenesis. It was demonstrated that 8-N3-ATP is a suitable analogue for probing the nucleotide-binding site of SCS. Two tryptic peptides from the N-terminal domain of the beta-subunit were labeled with 8-N3-ATP. These corresponded to residues 107-119beta and 121-146beta, two regions lying along one side of an ATP-grasp fold. A mutant protein with changes on the opposite side of the fold (G53betaV/R54betaE) was unable to be phosphorylated using ATP or GTP, but could be phosphorylated by succinyl-CoA and Pi. A mutant protein designed to probe nucleotide specificity (P20betaQ) had a Km(app) for GTP that was more than 5 times lower than that of wild-type SCS, whereas parameters for the other substrates remained unchanged. Mutations of residues in the C-terminal domain of the beta-subunit designed to distrupt one loop of the Rossmann fold (I322betaA, and R324betaN/D326betaA) had the greatest effect on the binding of succinate and CoA. They did not disrupt the phosphorylation of SCS with nucleotides. It was concluded that the nucleotide-binding site is located in the N-terminal domain of the beta-subunit. This implies that there are two active sites approximately 35 A apart, and that the H246alpha loop moves between them during catalysis. << Less
Biochemistry 38:7273-7283(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
CLYBL averts vitamin B12 depletion by repairing malyl-CoA.
Griffith C.M., Conrotte J.F., Paydar P., Xie X., Heins-Marroquin U., Gavotto F., Jaeger C., Ellens K.W., Linster C.L.
Citrate lyase beta-like protein (CLYBL) is a ubiquitously expressed mammalian enzyme known for its role in the degradation of itaconate, a bactericidal immunometabolite produced in activated macrophages. The association of CLYBL loss of function with reduced circulating vitamin B<sub>12</sub> leve ... >> More
Citrate lyase beta-like protein (CLYBL) is a ubiquitously expressed mammalian enzyme known for its role in the degradation of itaconate, a bactericidal immunometabolite produced in activated macrophages. The association of CLYBL loss of function with reduced circulating vitamin B<sub>12</sub> levels was proposed to result from inhibition of the B<sub>12</sub>-dependent enzyme methylmalonyl-CoA mutase by itaconyl-CoA. The discrepancy between the highly inducible and locally confined production of itaconate and the broad expression profile of CLYBL across tissues suggested a role for this enzyme beyond itaconate catabolism. Here we discover that CLYBL additionally functions as a metabolite repair enzyme for malyl-CoA, a side product of promiscuous citric acid cycle enzymes. We found that CLYBL knockout cells, accumulating malyl-CoA but not itaconyl-CoA, show decreased levels of adenosylcobalamin and that malyl-CoA is a more potent inhibitor of methylmalonyl-CoA mutase than itaconyl-CoA. Our work thus suggests that malyl-CoA plays a role in the B<sub>12</sub> deficiency observed in individuals with CLYBL loss of function. << Less
Nat. Chem. Biol. 21:906-915(2025) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
Identification of the kinetic mechanism of succinyl-CoA synthetase.
Li X., Wu F., Beard D.A.
The kinetic mechanism of SCS [succinyl-CoA (coenzyme A) synthetase], which participates in the TCA (tricarboxylic acid) cycle, ketone body metabolism and haem biosynthesis, has not been fully characterized. Namely, a representative catalytic mechanism and associated kinetic parameters that can exp ... >> More
The kinetic mechanism of SCS [succinyl-CoA (coenzyme A) synthetase], which participates in the TCA (tricarboxylic acid) cycle, ketone body metabolism and haem biosynthesis, has not been fully characterized. Namely, a representative catalytic mechanism and associated kinetic parameters that can explain data on the enzyme-catalysed reaction kinetics have not been established. To determine an accurate model, a set of putative mechanisms of SCS, proposed by previous researchers, were tested against experimental data (from previous publication) on SCS derived from porcine myocardium. Based on comparisons between model simulation and the experimental data, an ordered ter-ter mechanism with dead-end product inhibition of succinate against succinyl-CoA is determined to be the best candidate mechanism. A thermodynamically constrained set of parameter values is identified for this candidate mechanism. << Less