Reaction participants Show >> << Hide
- Name help_outline chlorophyllide a Identifier CHEBI:83348 Charge -2 Formula C35H32MgN4O5 InChIKeyhelp_outline IZOAGQOHKWGYKF-PVMVIUQGSA-K SMILEShelp_outline CCC1=C(C)C2=[N+]3C1=Cc1c(C)c4C(=O)[C-](C(=O)OC)C5=C6[C@@H](CCC([O-])=O)[C@H](C)C7=[N+]6[Mg--]3(n1c45)n1c(=C7)c(C)c(C=C)c1=C2 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 71-hydroxychlorophyllide a Identifier CHEBI:83357 Charge -2 Formula C35H32MgN4O6 InChIKeyhelp_outline SLCXPQHXALJFPR-XXRBRTKDSA-K SMILEShelp_outline CCC1=C(CO)C2=[N+]3C1=Cc1c(C)c4C(=O)[C-](C(=O)OC)C5=C6[C@@H](CCC([O-])=O)[C@H](C)C7=[N+]6[Mg--]3(n1c45)n1c(=C7)c(C)c(C=C)c1=C2 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22676 | RHEA:22677 | RHEA:22678 | RHEA:22679 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit.
Eggink L.L., LoBrutto R., Brune D.C., Brusslan J., Yamasato A., Tanaka A., Hoober J.K.
<h4>Background</h4>Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyze ... >> More
<h4>Background</h4>Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly.<h4>Results</h4>Fluorescence of a CAO-GFP fusion protein, transiently expressed in young pea leaves, was found at the periphery of mature chloroplasts and on thylakoid membranes by confocal fluorescence microscopy. However, when membranes from partially degreened cells of Chlamydomonas reinhardtii cw15 were resolved on sucrose gradients, full-length CAO was detected by immunoblot analysis only on the chloroplast envelope inner membrane. The electron paramagnetic resonance spectrum of CAO included a resonance at g = 4.3, assigned to the predicted mononuclear iron center. Instead of a spectrum of the predicted Rieske iron-sulfur center, a nearly symmetrical, approximately 100 Gauss peak-to-trough signal was observed at g = 2.057, with a sensitivity to temperature characteristic of an iron-sulfur center. A remarkably stable radical in the protein was revealed by an isotropic, 9 Gauss peak-to-trough signal at g = 2.0042. Fragmentation of the protein after incorporation of 125I-identified a conserved tyrosine residue (Tyr-422 in Chlamydomonas and Tyr-518 in Arabidopsis) as the radical species. The radical was quenched by chlorophyll a, an indication that it may be involved in the enzymatic reaction.<h4>Conclusion</h4>CAO was found on the chloroplast envelope and thylakoid membranes in mature chloroplasts but only on the envelope inner membrane in dark-grown C. reinhardtii cells. Such localization provides further support for the envelope membranes as the initial site of Chl b synthesis and assembly of LHCs during chloroplast development. Identification of a tyrosine radical in the protein provides insight into the mechanism of Chl b synthesis. << Less
BMC Plant Biol. 4:5-5(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana.
Espineda C.E., Linford A.S., Devine D., Brusslan J.A.
Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue ... >> More
Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue from Arabidopsis thaliana. This gene, AtCAO, is mutated in both leaky and null chlorina1 alleles, and DNA sequence changes cosegregate with the mutant phenotype. AtCAO mRNA levels are higher in three different mutants that have reduced levels of chlorophyll b, suggesting that plants that do not have sufficient chlorophyll b up-regulate AtCAO gene expression. Additionally, AtCAO mRNA levels decrease in plants that are grown under dim-light conditions. We have also found that the six major Lhcb proteins do not accumulate in the null ch1-3 allele. << Less
Proc. Natl. Acad. Sci. U.S.A. 96:10507-10511(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana.
Oster U., Tanaka R., Tanaka A., Ruediger W.
Chlorophyll (Chl) biosynthesis and degradation are the only biochemical processes on Earth that can be directly observed from satellites or other planets. The bulk of the Chls is found in the light-harvesting antenna complexes of photosynthetic organisms. Surprisingly little is known about the bio ... >> More
Chlorophyll (Chl) biosynthesis and degradation are the only biochemical processes on Earth that can be directly observed from satellites or other planets. The bulk of the Chls is found in the light-harvesting antenna complexes of photosynthetic organisms. Surprisingly little is known about the biosynthesis of Chl b, which is the second most abundant Chl pigment after Chl a. We describe here the expression and properties of the chlorophyllide a oxygenase gene (CAO) from Arabidopsis thaliana, which is apparently the key enzyme in Chl b biosynthesis. The recombinant enzyme produced in Escherichia coli catalyses an unusual two-step oxygenase reaction that is the 'missing link' in the chlorophyll cycle of higher plants. << Less
Plant J. 21:305-310(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
RHEA:22676 part of RHEA:30359