Reaction participants Show >> << Hide
- Name help_outline adenosylcob(III)inamide phosphate Identifier CHEBI:58502 Charge -1 Formula C58H83CoN16O14P InChIKeyhelp_outline MQCMBMUJJHSGIF-QMUWONGRSA-K SMILEShelp_outline C[C@H](CNC(=O)CC[C@]1(C)[C@@H](CC(N)=O)[C@H]2N3C1=C(C)C1=[N+]4C(=CC5=[N+]6C(=C(C)C7=[N+]([C@]2(C)[C@@](C)(CC(N)=O)[C@@H]7CCC(N)=O)[Co--]346C[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@](C)(CC(N)=O)[C@@H]5CCC(N)=O)C(C)(C)[C@@H]1CCC(N)=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GTP Identifier CHEBI:37565 (Beilstein: 5211792) help_outline Charge -4 Formula C10H12N5O14P3 InChIKeyhelp_outline XKMLYUALXHKNFT-UUOKFMHZSA-J SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 94 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenosylcob(III)inamide-GDP Identifier CHEBI:60487 Charge -1 Formula C68H95CoN21O21P2 InChIKeyhelp_outline IQTYKHRKNGVJEO-RRMAJTJESA-K SMILEShelp_outline [H][C@@]12[C@H](CC(N)=O)[C@@](C)(CCC(=O)NC[C@@H](C)OP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c3nc(N)[nH]c4=O)C3=C(C)C4=[N+]5C(=CC6=[N+]7C(=C(C)C8=[N+]([C@]1(C)[C@@](C)(CC(N)=O)[C@@H]8CCC(N)=O)[Co--]57(C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc5c(N)ncnc15)N23)[C@@](C)(CC(N)=O)[C@@H]6CCC(N)=O)C(C)(C)[C@@H]4CCC(N)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,118 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22712 | RHEA:22713 | RHEA:22714 | RHEA:22715 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
The biosynthesis of adenosylcobalamin (vitamin B12).
Warren M.J., Raux E., Schubert H.L., Escalante-Semerena J.C.
Vitamin B12, or cobalamin, is one of the most structurally complex small molecules made in Nature. Major progress has been made over the past decade in understanding how this synthesis is accomplished. This review covers some of the most important findings that have been made and provides the read ... >> More
Vitamin B12, or cobalamin, is one of the most structurally complex small molecules made in Nature. Major progress has been made over the past decade in understanding how this synthesis is accomplished. This review covers some of the most important findings that have been made and provides the reader with a complete description of the transformation of uroporphyrinogen III into adenosylcobalamin (AdoCbl). 183 references are cited. << Less
Nat Prod Rep 19:390-412(2002) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.
-
Analysis of the adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase (CobU) enzyme of Salmonella typhimurium LT2. Identification of residue His-46 as the site of guanylylation.
Thomas M.G., Thompson T.B., Rayment I., Escalante-Semerena J.C.
CobU is a bifunctional enzyme involved in adenosylcobalamin (coenzyme B(12)) biosynthesis in Salmonella typhimurium LT2. In this bacterium, CobU is the adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase needed to convert cobinamide to adenosylcobinamide-GDP during the late ... >> More
CobU is a bifunctional enzyme involved in adenosylcobalamin (coenzyme B(12)) biosynthesis in Salmonella typhimurium LT2. In this bacterium, CobU is the adenosylcobinamide kinase/adenosylcobinamide-phosphate guanylyltransferase needed to convert cobinamide to adenosylcobinamide-GDP during the late steps of adenosylcobalamin biosynthesis. The guanylyltransferase reaction has been proposed to proceed via a covalently modified CobU-GMP intermediate. Here we show that CobU requires a nucleoside upper ligand on cobinamide for substrate recognition, with the nucleoside base, but not the 2'-OH group of the ribose, being important for this recognition. During the kinase reaction, both the nucleotide base and the 2'-OH group of the ribose are important for gamma-phosphate donor recognition, and GTP is the only nucleotide competent for the complete nucleotidyltransferase reaction. Analysis of the ATP:adenosylcobinamide kinase reaction shows CobU becomes less active during this reaction due to the formation of a covalent CobU-AMP complex that holds CobU in an altered conformation. Characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase reaction shows the covalent CobU-GMP intermediate is on the reaction pathway for the generation of adenosylcobinamide-GDP. Identification of a modified histidine and analysis of cobU mutants indicate that histidine 46 is the site of guanylylation. << Less
J. Biol. Chem. 275:27576-27586(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Biochemical characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase (CobY) enzyme of the hyperthermophilic archaeon Methanocaldococcus jannaschii.
Otte M.M., Escalante-Semerena J.C.
The archaeal cobY gene encodes the nonorthologous replacement of the bacterial NTP:AdoCbi kinase (EC 2.7.7.62)/GTP:AdoCbi-P guanylyltransferase (EC 3.1.3.73) and is required for de novo synthesis of AdoCbl (coenzyme B(12)). Here we show that ORF MJ1117 of the hyperthermophilic, methanogenic archae ... >> More
The archaeal cobY gene encodes the nonorthologous replacement of the bacterial NTP:AdoCbi kinase (EC 2.7.7.62)/GTP:AdoCbi-P guanylyltransferase (EC 3.1.3.73) and is required for de novo synthesis of AdoCbl (coenzyme B(12)). Here we show that ORF MJ1117 of the hyperthermophilic, methanogenic archaeon Methanocaldococcus jannaschii encodes a CobY protein (Mj CobY) that transfers the GMP moiety of GTP to AdoCbi-P to form AdoCbi-GDP. Results from isothermal titration calorimetry (ITC) experiments show that MjCobY binds GTP (K(d) = 5 muM), but it does not bind the GTP analogues GMP-PNP (guanosine 5'-(beta,gamma)-imidotriphosphate) or GMP-PCP (guanylyl 5'-(beta,gamma)-methylenediphosphonate) nor GDP. Results from ITC experiments indicate that MjCobY binds one GTP per dimer. Results from in vivo studies support the conclusion that the 5'-deoxyadenosyl upper ligand of AdoCbi-P is required for MjCobY function. Consistent with these findings, MjCobY displayed high affinity for AdoCbi-P (K(d) = 0.76 muM) but did not bind nonadenosylated Cbi-P. Kinetic parameters for theMj CobY reaction were determined. Results from circular dichroism studies indicate that, in isolation, MjCobY denatures at 80 degrees C with a concomitant loss of activity. We propose that ORF MJ1117 of M. jannaschii be annotated as cobY to reflect its involvement in AdoCbl biosynthesis. << Less
-
Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) complexed with GMP: evidence for a substrate-induced transferase active site.
Thompson T.B., Thomas M.G., Escalante-Semerena J.C., Rayment I.
The X-ray crystal structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) from Salmonella typhimurium bound to GMP has been determined by molecular replacement to 2.2 A resolution. CobU is a bifunctional enzyme, which catalyzes the phosphorylation of the 1-am ... >> More
The X-ray crystal structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) from Salmonella typhimurium bound to GMP has been determined by molecular replacement to 2.2 A resolution. CobU is a bifunctional enzyme, which catalyzes the phosphorylation of the 1-amino-O-2-propanol side chain of the adenosylcobinamide ring and subsequently functions as a guanylyltransferase to form adenosylcobinamide.GDP. The transferase activity involves a covalent enzyme-guanylyl intermediate that is most likely a phosphoramidate linkage to His(46). Previous studies have shown that the enzyme is a homotrimer and adopts a pinwheel shape. Each subunit consists of a single domain of six parallel beta-strands and one antiparallel strand flanked on either side by a total of five alpha-helices and one helical turn. Interestingly, His(46) in the apoenzyme is located a considerable distance from the kinase active site or P-loop motif and is solvent-exposed [Thompson, T. B., et al. (1998) Biochemistry 37, 7686-7695]. To examine the structural relationship of the two active sites, CobU was cocrystallized with GTP and pyrophosphate. Crystals belong to space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 58. 4 A, b = 87.8 A, and c = 101.6 A. The structure shows electron density for the hydrolysis product GMP rather than the expected covalent guanylyl intermediate which appears to have been hydrolyzed in the crystal lattice. Even so, CobU exhibits a substantial conformational rearrangement. The helix axis containing His(46), the site of guanylylation, rotates 30 degrees and translates 11 A relative to the apo structure and is accompanied by compensatory unwinding and rewinding at the helix ends to allow the induction of a guanosine binding pocket between beta-strand 2 and alpha-helix 2. This conformational change brings the C(alpha) of His(46) approximately 10 A closer to the P-loop motif such that a phosphate ion located in the P-loop is only 6 A from the alpha-phosphate of GMP. This suggests that the P-loop motif may be used to coordinate the terminal phosphates in both the transferase and kinase reactions and implies that the active sites for both reactions overlap. << Less
Biochemistry 38:12995-13005(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase from Salmonella typhimurium determined to 2.3-A resolution.
Thompson T.B., Thomas M.G., Escalante-Semerena J.C., Rayment I.
The X-ray structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) from Salmonella typhimurium has been determined to 2.3 A resolution. This enzyme of subunit molecular weight 19 770 plays a central role in the assembly of the nucleotide loop for adenosylcobal ... >> More
The X-ray structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) from Salmonella typhimurium has been determined to 2.3 A resolution. This enzyme of subunit molecular weight 19 770 plays a central role in the assembly of the nucleotide loop for adenosylcobalamin where it catalyzes both the phosphorylation of the 1-amino-2-propanol side chain of the corrin ring and the subsequent attachment of GMP to form the product adenosylcobinamide-GDP. The kinase activity is believed to be associated with a P-loop motif, whereas the transferase activity proceeds at a different site on the enzyme via a guanylyl intermediate. The enzyme was crystallized in the space group C2221 with unit cell dimensions of a = 96.4 A, b = 114.4 A, and c = 106.7 A, with three subunits per asymmetric unit. The structure reveals that the enzyme is a molecular trimer and appears somewhat like a propeller with overall molecular dimensions of approximately 64 A x 77 A x 131 A. Each subunit consists of a single domain that is dominated by a seven-stranded mixed beta-sheet flanked on either side by a total of five alpha-helices and one helical turn. Six of the seven beta-strands run parallel. The C-terminal strand lies at the edge of the sheet and runs antiparallel to the others. Interestingly, CobU displays a remarkable structural and topological similarity to the central domain of the RecA protein, although the reason for this observation is unclear. The structure contains a P-loop motif located at the base of a prominent cleft formed by the association of two subunits and is most likely the kinase active site. Each subunit of CobU contains a cis peptide bond between Glu80 and Cys81 where Glu80 faces the P-loop and might serve to coordinate the magnesium ion of the triphosphate substrate. Interestingly, His46, which is the putative site for guanylylation, lies approximately 21 A from the P-loop and is solvent-exposed. This suggests that the enzyme undergoes a conformational change when the substrates bind to bring these two active sites into closer proximity. << Less
Biochemistry 37:7686-7695(1998) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Purification and characterization of the bifunctional CobU enzyme of Salmonella typhimurium LT2. Evidence for a CobU-GMP intermediate.
O'Toole G.A., Escalante-Semerena J.C.
The CobU protein of Salmonella typhimurium was overexpressed and purified to approximately 94% homogeneity. N-terminal sequencing of purified CobU confirmed the first 22 amino acids. In vitro assays showed that CobU has kinase and guanylyltransferase activities which catalyze the synthesis of aden ... >> More
The CobU protein of Salmonella typhimurium was overexpressed and purified to approximately 94% homogeneity. N-terminal sequencing of purified CobU confirmed the first 22 amino acids. In vitro assays showed that CobU has kinase and guanylyltransferase activities which catalyze the synthesis of adenosyl-cobinamide-GDP from adenosyl-cobinamide, via an adenosyl-cobinamide-phosphate intermediate. We present evidence that the transfer of the guanylyl moiety of GTP to adenosyl-cobinamide-phosphate proceeds via an phosphoramidate-linked, enzyme-guanylyl intermediate. In the presence of oxygen, kinase and guanylyltransferase activities of CobU were lost. Treatment of inactive CobU with dithiothreitol restored approximately 20% of the kinase and guanylyltransferase activities, indicating the involvement of sulfhydryl groups in enzyme activity. The sulfhydryl modifying agents 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide abolished both CobU activities. Native CobU protein was a dimer (approximately 40 kDa) that functioned optimally at pH 8.8-9.0 and 37 degrees C. Substrates and kinetic parameters for both activities were determined. The preferred corrinoid substrate for this enzyme was adenosyl-cobinamide. In vitro experiments are consistent with previous genetic studies which had suggested that adenosyl-cobinamide was the preferred substrate of CobU, and that CobU functioned more efficiently in the absence of oxygen. << Less
J. Biol. Chem. 270:23560-23569(1995) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.