Enzymes
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 4-acetamidobutanoyl-CoA Identifier CHEBI:58583 Charge -4 Formula C27H41N8O18P3S InChIKeyhelp_outline UEKGDRAHBCQADD-HDRQGHTBSA-J SMILEShelp_outline CC(=O)NCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,337 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 4-aminobutanoyl-CoA Identifier CHEBI:57352 Charge -3 Formula C25H40N8O17P3S InChIKeyhelp_outline HHFBTTVZSVBPFP-CITAKDKDSA-K SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22928 | RHEA:22929 | RHEA:22930 | RHEA:22931 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Metabolism of L-beta-lysine by a Pseudomonas. Purification and properties of a deacetylase-thiolesterase utilizing 4-acetamidobutyryl CoA and related compounds.
Ohsugi M., Kahn J., Hensley C., Chew S., Barker H.A.
A deacetylase-thiolesterase that cleaves both the amide and thiolester bonds of 4-acetamidobutyryl CoA has been highly purified from extracts of Pseudomonas B4 grown in a medium containing L-beta-lysine (3,6-diaminohexanoate) as the main energy source. The enzyme has a molecular weight of about 27 ... >> More
A deacetylase-thiolesterase that cleaves both the amide and thiolester bonds of 4-acetamidobutyryl CoA has been highly purified from extracts of Pseudomonas B4 grown in a medium containing L-beta-lysine (3,6-diaminohexanoate) as the main energy source. The enzyme has a molecular weight of about 275,000 and contains 8 apparently identical subunits of 36,500 daltons. Products of 4-acetamidobutyryl CoA degradation are stoichiometric amounts of CoASH and acetate, variable amounts of 4-aminobutyrate and its lactam, 2-pyrrolidinone, and a little 4-acetamidobutyrate. The relative yields of 4-aminobutyrate and 2-pyrrolidinone are determined by the enzyme level. At high enzyme levels the 4-aminobutyrate/pyrrolidinone ratio is about 2, whereas at low enzyme levels only pyrrolidinone is formed. Under the latter conditions, 4-aminobutyryl CoA accumulates transiently and is converted nonenzymatically to pyrrolidinone and CoASH. Since the enzyme does not form 4-aminobutyrate from synthetic or enzymatically formed 4-aminobutyryl CoA, we conclude that a 4-aminobutyryl CoA-enzyme complex is the actual precursor of 4-aminobutyrate, whereas free 4-aminobutyryl CoA is the precursor of pyrrolidinone. Several analogs of 4-acetamidobutyryl CoA containing different amino acid or amide moieties, and several simple acyl CoA compounds are utilized by the enzyme; 4-propionamidobutyryl CoA and 5-acetamidovaleryl CoA are most readily decomposed. Acetyl CoA is a very poor substrate. 3-Acetamidopropionyl CoA is first converted to acetate and beta-alanyl CoA and the latter compound is slowly hydrolyzed to beta-alanine and CoASH. Little deacetylase-thiolesterase is formed by bacteria grown in absence of beta-lysine, but another thiolesterase, lacking deacetylase activity, is produced. The deacetylase-thiolesterase catalyzes an essential step in the aerobic degradation of L-beta-lysine. << Less