Enzymes
UniProtKB help_outline | 12,286 proteins |
Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucuronate Identifier CHEBI:58052 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-LXQIFKJMSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 98 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-xylose Identifier CHEBI:57632 Charge -2 Formula C14H20N2O16P2 InChIKeyhelp_outline DQQDLYVHOTZLOR-OCIMBMBZSA-L SMILEShelp_outline O[C@@H]1CO[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23916 | RHEA:23917 | RHEA:23918 | RHEA:23919 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase.
Gu X., Lee S.G., Bar-Peled M.
Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defe ... >> More
Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing xylose as well as arabinose are also formed by other rhizobial species, but little is known about their structures and the biosynthetic pathways leading to their formation. To gain insight into the biosynthesis of these glycans and their biological roles, we report the identification of an operon in S. meliloti 1021 that contains two genes encoding activities not previously described in bacteria. One gene encodes a UDP-xylose synthase (Uxs) that converts UDP-glucuronic acid to UDP-xylose, and the second encodes a UDP-xylose 4-epimerase (Uxe) that interconverts UDP-xylose and UDP-arabinose. Similar genes were also identified in other rhizobial species, including Rhizobium leguminosarum, suggesting that they have important roles in the life cycle of this agronomically important class of bacteria. Functional studies established that recombinant SmUxs1 is likely to be active as a dimer and is inhibited by NADH and UDP-arabinose. SmUxe is inhibited by UDP-galactose, even though this nucleotide sugar is not a substrate for the 4-epimerase. Unambiguous evidence for the conversions of UDP-glucuronic acid to UDP-α-D-xylose and then to UDP-β-L-arabinose (UDP-arabinopyranose) was obtained using real-time (1)H-NMR spectroscopy. Our results provide new information about the ability of rhizobia to form UDP-xylose and UDP-arabinose, which are then used for the synthesis of xylose- and arabinose-containing glycans. << Less
Microbiology (Reading) 157:260-269(2011) [PubMed] [EuropePMC]
-
Characterization and expression patterns of UDP-D-glucuronate decarboxylase genes in barley.
Zhang Q., Shirley N., Lahnstein J., Fincher G.B.
UDP-D-glucuronate decarboxylase (EC 4.1.1.35) catalyzes the synthesis of UDP-D-xylose from UDP-D-glucuronate in an essentially irreversible reaction that is believed to commit glycosyl residues to heteroxylan and xyloglucan biosynthesis. Four members of the barley (Hordeum vulgare) UDP-D-glucurona ... >> More
UDP-D-glucuronate decarboxylase (EC 4.1.1.35) catalyzes the synthesis of UDP-D-xylose from UDP-D-glucuronate in an essentially irreversible reaction that is believed to commit glycosyl residues to heteroxylan and xyloglucan biosynthesis. Four members of the barley (Hordeum vulgare) UDP-D-glucuronate decarboxylase gene family, designated HvUXS1 to HvUXS4, have been cloned and characterized. Barley HvUXS1 appears to be a cytosolic enzyme, while the others are predicted to be membrane-bound proteins with single transmembrane helices. Heterologous expression of a barley HvUXS1 cDNA in Escherichia coli yields a soluble enzyme that converts UDP-d-glucuronate to UDP-D-xylose, is associated with a single molecule of bound NAD+, and is subject to feedback inhibition by UDP-D-xylose. Quantitative PCR shows that the HvUXS1 mRNA is most abundant among the 4 HvUXS genes, accounting for more than 80% of total HvUXS transcripts in most of the tissues examined. The abundance of HvUXS1 mRNA is 10-fold higher in mature roots and stems than in leaves, developing grains, or floral tissues. Transcriptional activities of HvUXS2 and HvUXS4 genes are relatively high in mature roots, coleoptiles, and stems compared with root tips, leaves, and floral tissues, while HvUXS3 mRNA is low in all tissues. In barley leaf sections, levels of the most abundant mRNA, encoding HvUXS1, reflect the amount of soluble enzymic protein and activity. In selected tissues where HvUXS1 transcript levels are high, cell walls have higher arabinoxylan contents. << Less
Comments
Published in: "Biosynthesis of uridine diphosphate D-xylose. 1. Uridine diphosphate glucuronate carboxy-lyase of wheat germ." Ankel, H. and Feingold, D.S. Biochemistry 4 (1965) 2468–2475.