Enzymes
UniProtKB help_outline | 11 proteins |
Enzyme classes help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 529 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline nitrite Identifier CHEBI:16301 (CAS: 14797-65-0) help_outline Charge -1 Formula NO2 InChIKeyhelp_outline IOVCWXUNBOPUCH-UHFFFAOYSA-M SMILEShelp_outline [O-]N=O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24628 | RHEA:24629 | RHEA:24630 | RHEA:24631 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Neurospora crassa NAD(P)H-nitrite reductase. Studies on its composition and structure.
Prodouz K.N., Garrett R.H.
Neurospora crassa nitrite reductase (Mr = 290,000) catalyzes the NAD(P)H-dependent 6-electron reduction of nitrite to ammonia via flavin and siroheme prosthetic groups. Homogeneous N. crassa nitrite reductase has been prepared employing conventional purification methods followed by affinity chroma ... >> More
Neurospora crassa nitrite reductase (Mr = 290,000) catalyzes the NAD(P)H-dependent 6-electron reduction of nitrite to ammonia via flavin and siroheme prosthetic groups. Homogeneous N. crassa nitrite reductase has been prepared employing conventional purification methods followed by affinity chromatography on blue dextran-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of homogeneous nitrite reductase reveals a single subunit band of Mr = 140,000. Isoelectric focusing of dissociated enzyme followed by sodium dodecyl sulfate-gel electrophoresis in the second dimension yields a single subunit spot with an isoelectric point at pH 6.8-6.9. Two-dimensional thin layer chromatography of acid-hydrolyzed nitrite reductase treated with 5-dimethylaminoaphthalene-1-sulfonyl chloride yields a single reactive NH2-terminal corresponding to glycine. An investigation of the prosthetic groups of nitrite reductase reveals little or no flavin associated with the purified protein, although exogenously added FAD is required for activity in vitro. An iron content of 9-10 Fe eq/mol suggests the presence of nonheme iron in addition to the siroheme moieties. Amino acid analysis yields 43 cysteinyl residues and sulfhydryl reagents react with 50 thiol eq/mol of nitrite reductase. The non-cysteinyl sulfur content, determined as 8.1 acid-labile sulfide eq/mol, is presumably associated with nonheme iron to form iron-sulfur centers. We conclude that N. crassa nitrite reductase is a homodimer of large molecular weight subunits housing an electron transfer complex of FAD, iron-sulfur centers, and siroheme to mediate the reduced pyridine nucleotide-dependent reduction of nitrite to ammonia. << Less
J Biol Chem 256:9711-9717(1981) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Functional dissection and site-directed mutagenesis of the structural gene for NAD(P)H-nitrite reductase in Neurospora crassa.
Colandene J.D., Garrett R.H.
Neurospora crassa NAD(P)H-nitrite reductase, encoded by the nit-6 gene, is a soluble, alpha2-type homodimeric protein composed of 127-kDa polypeptide subunits. This multicenter oxidation-reduction enzyme utilizes either NADH or NADPH as electron donor and possesses as prosthetic groups two iron-su ... >> More
Neurospora crassa NAD(P)H-nitrite reductase, encoded by the nit-6 gene, is a soluble, alpha2-type homodimeric protein composed of 127-kDa polypeptide subunits. This multicenter oxidation-reduction enzyme utilizes either NADH or NADPH as electron donor and possesses as prosthetic groups two iron-sulfur (Fe4S4) clusters, two siroheme groups, and two FAD molecules. The native activity of the enzyme is the NAD(P)H-dependent reduction of nitrite to ammonia. In addition, N. crassa nitrite reductase displays several partial activities in vitro, including a siroheme-independent NAD(P)H-cytochrome c reductase activity and an FAD-independent dithionite-nitrite reductase activity. These partial activities are presumed to be manifestations of discrete functional domains within the protein. A full-length nit-6 cDNA was constructed and used in developing an expression system within E. coli capable of yielding high levels of NADPH-nitrite reductase activity. Maximal expression was obtained in nirB-E. coli cells grown anaerobically at 22 +/-1 degrees C, in conjunction with co-expression of a plasmid-borne cysG gene (encoding the rate-limiting enzyme in siroheme synthesis) and co-transformation with plasmid pGroESL (encoding bacterial chaperonins GroES and GroEL). Dissection of gene segments encoding putative functional domains within the nit-6 gene was performed. Expression of a partial cDNA construct encoding the FAD-/NAD-binding domain yielded extracts with NADPH-cytochrome c reductase activity but no NADPH-nitrite reductase activity or dithionite-nitrite reductase activity. Expression of a cDNA construct encoding the (Fe4S4)-siroheme-binding domain resulted in extracts possessing dithionite-nitrite reductase activity but no NADPH-nitrite reductase or NADPH-cytochrome c reductase activity. Analysis of site-directed mutations altering amino acid residues Cys-331 within the FAD-/NAD-binding domain and Ser-755 within the (Fe4S4)-siroheme-binding domain of the nitrite reductase demonstrated that these residues were not essential for native or partial enzyme activity. Cys-757 within the (Fe4S4)-siroheme-binding domain was essential for native enzyme activity. << Less
J Biol Chem 271:24096-24104(1996) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Molecular cloning, characterization, and nucleotide sequence of nit-6, the structural gene for nitrite reductase in Neurospora crassa.
Exley G.E., Colandene J.D., Garrett R.H.
The Neurospora crassa assimilatory nitrite reductase structural gene, nit-6, has been isolated. A cDNA library was constructed from poly(A)+ RNA isolated from Neurospora mycelia in which nitrate assimilation had been induced. This cDNA was ligated into lambda ZAP II (Stratagene) and amplified. Thi ... >> More
The Neurospora crassa assimilatory nitrite reductase structural gene, nit-6, has been isolated. A cDNA library was constructed from poly(A)+ RNA isolated from Neurospora mycelia in which nitrate assimilation had been induced. This cDNA was ligated into lambda ZAP II (Stratagene) and amplified. This library was then screened with a polyclonal antibody specific for nitrite reductase. A total of six positive clones were identified. Three of the six clones were found to be identical via restriction digests, restriction fragment length polymorphism mapping, Southern hybridization, and some preliminary sequencing. One of these cDNA clones (pNiR-3) was used as a probe in Northern assays and was found to hybridize to a 3.5-kb poly(A)+ RNA whose expression is nitrate inducible and glutamine repressible in wild-type mycelia. pNiR-3 was used to probe an N. crassa genomic DNA library in phage lambda J1, and many positive clones were isolated. When five of these clones were tested for their ability to transform nit-6 mutants, one clone consistently generated many wild-type transformants. The nit-6 gene has been subcloned to generate pnit-6. The nit-6 gene has been sequenced and mapped; its deduced amino acid sequence exhibits considerable levels of homology to the sequences of Aspergillus sp. and Escherichia coli nitrite reductases. Several pnit-6 transformants have been propagated as homokaryons. These strains have been assayed for the presence of multiple copies of the nit-6 gene, as well as nitrite reductase activity. << Less
J. Bacteriol. 175:2379-2392(1993) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.