Enzymes
UniProtKB help_outline | 5,134 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline all-trans-retinol Identifier CHEBI:17336 (Beilstein: 403040; CAS: 11103-57-4,68-26-8) help_outline Charge 0 Formula C20H30O InChIKeyhelp_outline FPIPGXGPPPQFEQ-OVSJKPMPSA-N SMILEShelp_outline C\C(=C/CO)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 29 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,262 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline all-trans-retinal Identifier CHEBI:17898 (CAS: 116-31-4) help_outline Charge 0 Formula C20H28O InChIKeyhelp_outline NCYCYZXNIZJOKI-OVSJKPMPSA-N SMILEShelp_outline [H]C(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,256 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25033 | RHEA:25034 | RHEA:25035 | RHEA:25036 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids.
Belyaeva O.V., Korkina O.V., Stetsenko A.V., Kim T., Nelson P.S., Kedishvili N.Y.
Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human t ... >> More
Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products. << Less
Biochemistry 44:7035-7047(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids.
Gallego O., Belyaeva O.V., Porte S., Ruiz F.X., Stetsenko A.V., Shabrova E.V., Kostereva N.V., Farres J., Pares X., Kedishvili N.Y.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto ... >> More
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo. << Less
Biochem. J. 399:101-109(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE.
Wu B.X., Chen Y., Chen Y., Fan J., Rohrer B., Crouch R.K., Ma J.-X.
<h4>Purpose</h4>In the photic visual cycle, retinal G protein-coupled receptor (RGR) isomerizes all-trans retinal to 11-cis retinal in the retinal pigment epithelium (RPE) after illumination. It is unclear, however, how all-trans retinal, the substrate for RGR, is generated in the RPE, because no ... >> More
<h4>Purpose</h4>In the photic visual cycle, retinal G protein-coupled receptor (RGR) isomerizes all-trans retinal to 11-cis retinal in the retinal pigment epithelium (RPE) after illumination. It is unclear, however, how all-trans retinal, the substrate for RGR, is generated in the RPE, because no all-trans retinol dehydrogenase (atRDH) has been identified in the RPE. This study was conducted to identify the atRDH that generates all-trans retinal in the RPE.<h4>Methods</h4>The full-length cDNA encoding a novel atRDH, RDH10, was cloned by PCR based on an expressed sequence tag (EST). Cellular localization was determined at the mRNA level by Northern blot analysis, RT-PCR, and in situ hybridization and at the protein level by immunohistochemistry with an antibody specific to RDH10. The activity was measured by an RDH activity assay with recombinant RDH10 expressed in COS cells.<h4>Results</h4>The full-length RDH10 was cloned from the human, cow, and mouse. These cDNAs encode a protein of 341 amino acids and have significant sequence homology with other short-chain dehydrogenases/reductases (SDRs). The human RDH10 shares 100% and 98.6% amino acid sequence identity with the bovine and mouse proteins, respectively, suggesting a highly conserved sequence during evolution. RDH10 is predominantly expressed in the microsomal fraction of the RPE. Human RDH10 expressed in COS cells oxidized all-trans retinol to all-trans retinal. RDH10 displayed substrate specificity for all-trans retinol and preferred nicotinamide adenine dinucleotide phosphate (NADP) as the cofactor.<h4>Conclusions</h4>RDH10 is a novel retinol oxidase expressed in the RPE. This enzyme can generate all-trans retinal from all-trans retinol and may play an important role in the photic visual cycle. << Less
Invest. Ophthalmol. Vis. Sci. 43:3365-3372(2002) [PubMed] [EuropePMC]
-
Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism.
Crosas B., Hyndman D.J., Gallego O., Martras S., Pares X., Flynn T.G., Farres J.
Aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intesti ... >> More
Aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intestine (HSI) AR and pig aldehyde reductase. Human AR and HSI AR were very efficient in the reduction of all- trans -, 9- cis - and 13-cis -retinal ( k (cat)/ K (m)=1100-10300 mM(-1).min(-1)), constituting the first cytosolic NADP(H)-dependent retinal reductases described in humans. Aldehyde reductase showed no activity with these retinal isomers. Glucose was a poor inhibitor ( K (i)=80 mM) of retinal reductase activity of human AR, whereas tolrestat, a classical AKR inhibitor used pharmacologically to treat diabetes, inhibited retinal reduction by human AR and HSI AR. All-trans -retinoic acid failed to inhibit both enzymes. In this paper we present the AKRs as an emergent superfamily of retinal-active enzymes, putatively involved in the regulation of retinoid biological activity through the assimilation of retinoids from beta-carotene and the control of retinal bioavailability. << Less
Biochem. J. 373:973-979(2003) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Evidence that the human gene for prostate short-chain dehydrogenase/reductase (PSDR1) encodes a novel retinal reductase (RalR1).
Kedishvili N.Y., Chumakova O.V., Chetyrkin S.V., Belyaeva O.V., Lapshina E.A., Lin D.W., Matsumura M., Nelson P.S.
All-trans-retinoic acid is a metabolite of vitamin A (all-trans-retinol) that functions as an activating ligand for a family of nuclear retinoic acid receptors. The intracellular levels of retinoic acid in tissues are tightly regulated, although the mechanisms underlying the control of retinoid me ... >> More
All-trans-retinoic acid is a metabolite of vitamin A (all-trans-retinol) that functions as an activating ligand for a family of nuclear retinoic acid receptors. The intracellular levels of retinoic acid in tissues are tightly regulated, although the mechanisms underlying the control of retinoid metabolism at the level of specific enzymes are not completely understood. In this report we present the first characterization of the retinoid substrate specificity of a novel short-chain dehydrogenase/reductase (SDR) encoded by RalR1/PSDR1, a cDNA recently isolated from the human prostate (Lin, B., White, J. T., Ferguson, C., Wang, S., Vessella, R., Bumgarner, R., True, L. D., Hood, L., and Nelson, P. S. (2001) Cancer Res. 61, 1611-1618). We demonstrate that RalR1 exhibits an oxidoreductive catalytic activity toward retinoids, but not steroids, with at least an 800-fold lower apparent K(m) values for NADP+ and NADPH versus NAD+ and NADH as cofactors. The enzyme is approximately 50-fold more efficient for the reduction of all-trans-retinal than for the oxidation of all-trans-retinol. Importantly, RalR1 reduces all-trans-retinal in the presence of a 10-fold molar excess of cellular retinol-binding protein type I, which is believed to sequester all-trans-retinal from nonspecific enzymes. As shown by immunostaining of human prostate and LNCaP cells with monoclonal anti-RalR1 antibodies, the enzyme is highly expressed in the epithelial cell layer of human prostate and localizes to the endoplasmic reticulum. The enzymatic properties and expression pattern of RalR1 in prostate epithelium suggest that it might play a role in the regulation of retinoid homeostasis in human prostate. << Less
-
Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase.
Gimenez-Dejoz J., Kolar M.H., Ruiz F.X., Crespo I., Cousido-Siah A., Podjarny A., Barski O.A., Fanfrlik J., Pares X., Farres J., Porte S.
Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and ... >> More
Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15. << Less
PLoS ONE 10:E0134506-E0134506(2015) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Human retinol dehydrogenase 13 (RDH13) is a mitochondrial short-chain dehydrogenase/reductase with a retinaldehyde reductase activity.
Belyaeva O.V., Korkina O.V., Stetsenko A.V., Kedishvili N.Y.
Retinol dehydrogenase 13 (RDH13) is a recently identified short-chain dehydrogenase/reductase related to microsomal retinoid oxidoreductase RDH11. In this study, we examined the distribution of RDH13 in human tissues, determined its subcellular localization and characterized the substrate and cofa ... >> More
Retinol dehydrogenase 13 (RDH13) is a recently identified short-chain dehydrogenase/reductase related to microsomal retinoid oxidoreductase RDH11. In this study, we examined the distribution of RDH13 in human tissues, determined its subcellular localization and characterized the substrate and cofactor specificity of purified RDH13 in order to better understand its properties. The results of this study demonstrate that RDH13 exhibits a wide tissue distribution and, by contrast with other members of the RDH11-like group of short-chain dehydrogenases/reductases, is a mitochondrial rather than a microsomal protein. Protease protection assays suggest that RDH13 is localized on the outer side of the inner mitochondrial membrane. Kinetic analysis of the purified protein shows that RDH13 is catalytically active and recognizes retinoids as substrates. Similar to the microsomal RDHs, RDH11, RDH12 and RDH14, RDH13 exhibits a much lower Km value for NADPH than for NADH and has a greater catalytic efficiency in the reductive than in the oxidative direction. The localization of RDH13 at the entrance to the mitochondrial matrix suggests that it may function to protect mitochondria against oxidative stress associated with the highly reactive retinaldehyde produced from dietary beta-carotene. << Less
-
Human pancreas protein 2 (PAN2) has a retinal reductase activity and is ubiquitously expressed in human tissues.
Belyaeva O.V., Kedishvili N.Y.
Human gene for pancreas protein 2 (PAN2) is a novel member of the short-chain dehydrogenase/reductase gene superfamily. The properties of PAN2 protein have not yet been characterized. We present the first evidence that human PAN2 is a ubiquitously expressed microsomal enzyme that recognizes retino ... >> More
Human gene for pancreas protein 2 (PAN2) is a novel member of the short-chain dehydrogenase/reductase gene superfamily. The properties of PAN2 protein have not yet been characterized. We present the first evidence that human PAN2 is a ubiquitously expressed microsomal enzyme that recognizes retinoids but not steroids as substrates with the apparent K(m) values between 0.08 microM and 0.4 microM. PAN2 is approximately 4-fold more efficient in the reductive than in the oxidative direction. The apparent K(m) values for NADP(+) and NADPH are 0.65 microM and 0.32 microM versus 1200 microM and 1060 microM for NAD(+) and NADH, respectively. Kinetic constants and expression pattern of PAN2 suggest that it is likely to function as a reductase in vivo and might contribute to the reduction of retinaldehyde to retinol in most human tissues. << Less
FEBS Lett. 531:489-493(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal.
Haeseleer F., Huang J., Lebioda L., Saari J.C., Palczewski K.
The reduction of all-trans-retinal in photoreceptor outer segments is the first step in the regeneration of bleached visual pigments. We report here the cloning of a dehydrogenase, retSDR1, that belongs to the short-chain dehydrogenase/reductase superfamily and localizes predominantly in cone phot ... >> More
The reduction of all-trans-retinal in photoreceptor outer segments is the first step in the regeneration of bleached visual pigments. We report here the cloning of a dehydrogenase, retSDR1, that belongs to the short-chain dehydrogenase/reductase superfamily and localizes predominantly in cone photoreceptors. retSDR1 expressed in insect cells displayed substrate specificities of the photoreceptor all-trans-retinol dehydrogenase. Homology modeling of retSDR1 using the carbonyl reductase structure as a scaffold predicted a classical Rossmann fold for the nucleotide binding, and an N-terminal extension that could facilitate binding of the enzyme to the cell membranes. The presence of retSDR1 in a subset of inner retinal neurons and in other tissues suggests that the enzyme may also be involved in retinol metabolism outside of photoreceptors. << Less
-
Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina.
Haeseleer F., Jang G.-F., Imanishi Y., Driessen C.A.G.G., Matsumura M., Nelson P.S., Palczewski K.
Retinoids are chromophores involved in vision, transcriptional regulation, and cellular differentiation. Members of the short chain alcohol dehydrogenase/reductase superfamily catalyze the transformation of retinol to retinal. Here, we describe the identification and properties of three enzymes fr ... >> More
Retinoids are chromophores involved in vision, transcriptional regulation, and cellular differentiation. Members of the short chain alcohol dehydrogenase/reductase superfamily catalyze the transformation of retinol to retinal. Here, we describe the identification and properties of three enzymes from a novel subfamily of four retinol dehydrogenases (RDH11-14) that display dual-substrate specificity, uniquely metabolizing all-trans- and cis-retinols with C(15) pro-R specificity. RDH11-14 could be involved in the first step of all-trans- and 9-cis-retinoic acid production in many tissues. RDH11-14 fill the gap in our understanding of 11-cis-retinal and all-trans-retinal transformations in photoreceptor (RDH12) and retinal pigment epithelial cells (RDH11). The dual-substrate specificity of RDH11 explains the minor phenotype associated with mutations in 11-cis-retinol dehydrogenase (RDH5) causing fundus albipunctatus in humans and engineered mice lacking RDH5. Furthermore, photoreceptor RDH12 could be involved in the production of 11-cis-retinal from 11-cis-retinol during regeneration of the cone visual pigments. These newly identified enzymes add new elements to important retinoid metabolic pathways that have not been explained by previous genetic and biochemical studies. << Less
J. Biol. Chem. 277:45537-45546(2002) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.