Reaction participants Show >> << Hide
-
Namehelp_outline
D-tyrosyl-tRNATyr
Identifier
RHEA-COMP:9872
Reactive part
help_outline
- Name help_outline 3-O-adenylyl-D-tyrosine group Identifier CHEBI:78723 Charge -1 Formula C19H21N6O8P SMILEShelp_outline N[C@H](Cc1ccc(O)cc1)C(=O)O[C@@H]1[C@@H](COP([O-])(-*)=O)O[C@H]([C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,148 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-tyrosine Identifier CHEBI:58570 Charge 0 Formula C9H11NO3 InChIKeyhelp_outline OUYCCCASQSFEME-MRVPVSSYSA-N SMILEShelp_outline [NH3+][C@H](Cc1ccc(O)cc1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
tRNATyr
Identifier
RHEA-COMP:9707
Reactive part
help_outline
- Name help_outline AMP 3'-end residue Identifier CHEBI:78442 Charge -1 Formula C10H12N5O6P SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 70 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25347 | RHEA:25348 | RHEA:25349 | RHEA:25350 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Functional characterization of the D-Tyr-tRNATyr deacylase from Escherichia coli.
Soutourina J., Plateau P., Delort F., Peirotes A., Blanquet S.
The yihZ gene of Escherichia coli is shown to produce a deacylase activity capable of recycling misaminoacylated D-Tyr-tRNATyr. The reaction is specific and, under optimal in vitro conditions, proceeds at a rate of 6 s-1 with a Km value for the substrate equal to 1 microM. Cell growth is sensitive ... >> More
The yihZ gene of Escherichia coli is shown to produce a deacylase activity capable of recycling misaminoacylated D-Tyr-tRNATyr. The reaction is specific and, under optimal in vitro conditions, proceeds at a rate of 6 s-1 with a Km value for the substrate equal to 1 microM. Cell growth is sensitive to interruption of the yihZ gene if D-tyrosine is added to minimal culture medium. Toxicity of exogenous D-tyrosine is exacerbated if, in addition to the disruption of yihZ, the gene of D-amino acid dehydrogenase (dadA) is also inactivated. Orthologs of the yihZ gene occur in many, but not all, bacteria. In support of the idea of a general role of the D-Tyr-tRNATyr deacylase function in the detoxification of cells, similar genes can be recognized in Saccharomyces cerevisiae, Caenorhabditis elegans, Arabidopsis thaliana, mouse, and man. << Less
-
Structure of crystalline D-Tyr-tRNA(Tyr) deacylase. A representative of a new class of tRNA-dependent hydrolases.
Ferri-Fioni M.-L., Schmitt E., Soutourina J., Plateau P., Mechulam Y., Blanquet S.
Cell growth inhibition by several d-amino acids can be explained by an in vivo production of d-aminoacyl-tRNA molecules. Escherichia coli and yeast cells express an enzyme, d-Tyr-tRNA(Tyr) deacylase, capable of recycling such d-aminoacyl-tRNA molecules into free tRNA and d-amino acid. Accordingly, ... >> More
Cell growth inhibition by several d-amino acids can be explained by an in vivo production of d-aminoacyl-tRNA molecules. Escherichia coli and yeast cells express an enzyme, d-Tyr-tRNA(Tyr) deacylase, capable of recycling such d-aminoacyl-tRNA molecules into free tRNA and d-amino acid. Accordingly, upon inactivation of the genes of the above deacylases, the toxicity of d-amino acids increases. Orthologs of the deacylase are found in many cells. In this study, the crystallographic structure of dimeric E. coli d-Tyr-tRNA(Tyr) deacylase at 1.55 A resolution is reported. The structure corresponds to a beta-barrel closed on one side by a beta-sheet lid. This barrel results from the assembly of the two subunits. Analysis of the structure in relation with sequence homologies in the orthologous family suggests the location of the active sites at the carboxy end of the beta-strands. The solved structure markedly differs from those of all other documented tRNA-dependent hydrolases. << Less
-
Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells.
Soutourina J., Plateau P., Blanquet S.
In Escherichia coli, tyrosyl-tRNA synthetase is known to esterify tRNA(Tyr) with tyrosine. Resulting d-Tyr-tRNA(Tyr) can be hydrolyzed by a d-Tyr-tRNA(Tyr) deacylase. By monitoring E. coli growth in liquid medium, we systematically searched for other d-amino acids, the toxicity of which might be e ... >> More
In Escherichia coli, tyrosyl-tRNA synthetase is known to esterify tRNA(Tyr) with tyrosine. Resulting d-Tyr-tRNA(Tyr) can be hydrolyzed by a d-Tyr-tRNA(Tyr) deacylase. By monitoring E. coli growth in liquid medium, we systematically searched for other d-amino acids, the toxicity of which might be exacerbated by the inactivation of the gene encoding d-Tyr-tRNA(Tyr) deacylase. In addition to the already documented case of d-tyrosine, positive responses were obtained with d-tryptophan, d-aspartate, d-serine, and d-glutamine. In agreement with this observation, production of d-Asp-tRNA(Asp) and d-Trp-tRNA(Trp) by aspartyl-tRNA synthetase and tryptophanyl-tRNA synthetase, respectively, was established in vitro. Furthermore, the two d-aminoacylated tRNAs behaved as substrates of purified E. coli d-Tyr-tRNA(Tyr) deacylase. These results indicate that an unexpected high number of d-amino acids can impair the bacterium growth through the accumulation of d-aminoacyl-tRNA molecules and that d-Tyr-tRNA(Tyr) deacylase has a specificity broad enough to recycle any of these molecules. The same strategy of screening was applied using Saccharomyces cerevisiae, the tyrosyl-tRNA synthetase of which also produces d-Tyr-tRNA(Tyr), and which, like E. coli, possesses a d-Tyr-tRNA(Tyr) deacylase activity. In this case, inhibition of growth by the various 19 d-amino acids was followed on solid medium. Two isogenic strains containing or not the deacylase were compared. Toxic effects of d-tyrosine and d-leucine were reinforced upon deprivation of the deacylase. This observation suggests that, in yeast, at least two d-amino acids succeed in being transferred onto tRNAs and that, like in E. coli, the resulting two d-aminoacyl-tRNAs are substrates of a same d-aminoacyl-tRNA deacylase. << Less
J. Biol. Chem. 275:32535-32542(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.