Enzymes
UniProtKB help_outline | 593 proteins |
Reaction participants Show >> << Hide
- Name help_outline dopamine Identifier CHEBI:59905 Charge 1 Formula C8H12NO2 InChIKeyhelp_outline VYFYYTLLBUKUHU-UHFFFAOYSA-O SMILEShelp_outline [NH3+]CCc1ccc(O)c(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,148 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,675 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3,4-dihydroxyphenylacetaldehyde Identifier CHEBI:27978 (CAS: 5707-55-1) help_outline Charge 0 Formula C8H8O3 InChIKeyhelp_outline IADQVXRMSNIUEL-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)Cc1ccc(O)c(O)c1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 437 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 527 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:27946 | RHEA:27947 | RHEA:27948 | RHEA:27949 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Biodegradation of aromatic compounds by Escherichia coli.
Diaz E., Ferrandez A., Prieto M.A., Garcia J.L.
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E ... >> More
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. << Less
Microbiol Mol Biol Rev 65:523-569(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
90 years of monoamine oxidase: some progress and some confusion.
Tipton K.F.
It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical inte ... >> More
It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty. Some issues that remain to be understood or are in need of further clarification are highlighted. << Less
J Neural Transm (Vienna) 125:1519-1551(2018) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
The oxidation of adrenaline and noradrenaline by the two forms of monoamine oxidase from human and rat brain.
O'Carroll A.M., Bardsley M.E., Tipton K.F.
The selective monoamine oxidase inhibitors clorgyline and (?)-deprenyl were used to study the distribution of monoamine oxidase-A and -B (MAO-A, MAO-B) activities towards (?)-noradrenaline and (+),(?)-adrenaline in homogenates from seven different regions of human brain. The activities towards 5-h ... >> More
The selective monoamine oxidase inhibitors clorgyline and (?)-deprenyl were used to study the distribution of monoamine oxidase-A and -B (MAO-A, MAO-B) activities towards (?)-noradrenaline and (+),(?)-adrenaline in homogenates from seven different regions of human brain. The activities towards 5-hydroxytryptamine and 2-phenethylamine, which are essentially specific substrates for the A- and B-forms, respectively, under the conditions used in this work, were also determined. Noradreanline and adrenaline were substrates for both forms of the enzyme in all regions studied. The total MAO activity was found to be highest in the hypothalamus and lowest in the cerebellar cortex. Use of the selective MAO inhibitors clorgyline and (?)-deprenyl also showed adrenaline and noradrenaline to be substrates for both forms of the enzyme in rat brain. In human cerebral cortex and rat brain the two forms were found to have similar K(m)-values and maximum velocities towards adrenaline. These values for the two forms were also found to be similar in human cerebral cortex when noradrenaline was used as the substrate. In contrast MAO-A showed a significantly lower K(m) and a higher maximum velocity towards noradrenaline in rat brain. These results suggest that the rat may not provide a close model of the human for studies on the effects of MAO inhibitors on brain noradrenaline metabolism. << Less
Neurochem. Int. 8:493-500(1986) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.