Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 346 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline spermidine Identifier CHEBI:57834 Charge 3 Formula C7H22N3 InChIKeyhelp_outline ATHGHQPFGPMSJY-UHFFFAOYSA-Q SMILEShelp_outline [NH3+]CCCC[NH2+]CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 35 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,494 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N8-acetylspermidine Identifier CHEBI:58535 Charge 2 Formula C9H23N3O InChIKeyhelp_outline FONIWJIDLJEJTL-UHFFFAOYSA-P SMILEShelp_outline CC(=O)NCCCC[NH2+]CCC[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28270 | RHEA:28271 | RHEA:28272 | RHEA:28273 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Properties and structure of spermidine acetyltransferase in Escherichia coli.
Fukuchi J., Kashiwagi K., Takio K., Igarashi K.
Spermidine acetyltransferase (SAT) from Escherichia coli was purified about 40,000-fold. The molecular mass of native SAT was 95 kDa, and it consisted of four identical subunits. The products formed from the reaction of acetyl-CoA with spermidine by SAT were N1- and N8-acetylspermidine. The Km val ... >> More
Spermidine acetyltransferase (SAT) from Escherichia coli was purified about 40,000-fold. The molecular mass of native SAT was 95 kDa, and it consisted of four identical subunits. The products formed from the reaction of acetyl-CoA with spermidine by SAT were N1- and N8-acetylspermidine. The Km values for acetyl-CoA, spermidine, and spermine were 2 microM, 1.29 mM, and 220 microM, respectively. The enzymatic activity increased by 2.5-3.5-fold under the condition of poor nutrition but not in response to cold shock or high pH. By using synthetic oliogonucleotides deduced from amino acid sequences of the peptides in SAT, a polymerase chain reaction product with a length of 250 nucleotides was obtained. Using this polymerase chain reaction product, the gene encoding SAT (speG) was cloned and mapped at 35.6 min in the E. coli chromosome. E. coli cells transformed with the cloned speG gene increased SAT activity by 8-40-fold. The gene encoded a 186-amino acid protein, but SAT consisted of 185 amino acids because the initiator methionine was liberated from the protein. Thus, the predicted molecular mass was 21,756 Da. Significant similarity to aminoglycoside acetyltransferase and peptide N-acetyltransferase was observed in the amino acid sequence 87-141, and some similarity with spermidine-preferential binding protein (potD protein) in the spermidine-preferential uptake system was observed in the amino acid sequence 122-141. The results suggest that the active center of SAT may be located in the COOH-terminal portion. << Less
J. Biol. Chem. 269:22581-22585(1994) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis.
Woolridge D.P., Martinez J.D., Stringer D.E., Gerner E.W.
Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier ... >> More
Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier, Gerner and Neyfakh (1997) J. Biol. Chem. 272, 8864-8866]. Here we show that BltD acetylates both spermidine and spermine at primary propyl amine moieties, with spermine being the preferred substrate. In the presence of saturating concentrations of acetyl CoA, BltD rapidly acetylates spermine at both the N1 and N12 positions. The Km (app) values for spermine, spermidine and N1-acetylspermine are </=67, 200 and 1200 microM, respectively. Diamines ranging from 1, 3-diaminopropane to 1,12-diaminododecane, monoacetylputrescine and N8-acetylspermidine were not substrates for BltD. Putrescine (1, 4-diaminobutane) and N8-acetylspermidine were competitive inhibitors of spermidine acetylation by BltD, with Ki values of 0.25 and 5.76 mM, respectively. CoA competitively inhibited both spermidine and acetyl-CoA interactions with BltD. These data and other results indicate that the mechanism of spermidine and spermine acetylation by BltD is a random-order mechanism of bi-molecular kinetics. << Less
Biochem. J. 340:753-758(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Paramecium bursaria chlorella virus 1 encodes a polyamine acetyltransferase.
Charlop-Powers Z., Jakoncic J., Gurnon J.R., Van Etten J.L., Zhou M.M.
Paramecium bursaria chlorella virus 1 (PBCV-1), a large DNA virus that infects green algae, encodes a histone H3 lysine 27-specific methyltransferase that functions in global transcriptional silencing of the host. PBCV-1 has another gene a654l that encodes a protein with sequence similarity to the ... >> More
Paramecium bursaria chlorella virus 1 (PBCV-1), a large DNA virus that infects green algae, encodes a histone H3 lysine 27-specific methyltransferase that functions in global transcriptional silencing of the host. PBCV-1 has another gene a654l that encodes a protein with sequence similarity to the GCN5 family histone acetyltransferases. In this study, we report a 1.5 Å crystal structure of PBCV-1 A654L in a complex with coenzyme A. The structure reveals a unique feature of A654L that precludes its acetylation of histone peptide substrates. We demonstrate that A654L, hence named viral polyamine acetyltransferase (vPAT), acetylates polyamines such as putrescine, spermidine, cadaverine, and homospermidine present in both PBCV-1 and its host through a reaction dependent upon a conserved glutamate 27. Our study suggests that as the first virally encoded polyamine acetyltransferase, vPAT plays a possible key role in the regulation of polyamine catabolism in the host during viral replication. << Less
J. Biol. Chem. 287:9547-9551(2012) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
P/CAF-mediated spermidine acetylation regulates histone acetyltransferase activity.
Burgio G., Corona D.F., Nicotra C.M., Carruba G., Taibi G.
Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are ... >> More
Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are also targets of both cytoplasmic and nuclear acetylation, which in turn alters their affinity for DNA and nucleosomes. Previous studies report the interplay between polyamines metabolism and levels of histone acetylation, but the molecular basis of this effect is still unclear. In this work, we have analyzed the in vitro effect of spermidine on histone H3 acetylation catalyzed by P/CAF, a highly conserved histone acetyltransferase (HAT) (E.C. 2.3.1.48). We have observed that spermidine at very low concentrations activates P/CAF, while it has an inhibitory effect at concentrations higher than 4 μM. In addition, the in vitro bimodal effect of spermidine on histone H3 acetylation was also distinctly observed in vivo on polytene chromosomes of Drosophila melanogaster. We also performed kinetic studies indicating that the activating effect of low spermidine concentrations on P/CAF-HAT activity is based on its involvement as a substrate for P/CAF to produce N<sup>8</sup>-acetylspermidine that is able in turn to increase the enzyme activity up to four fold. << Less
J. Enzym. Inhib. Med. Chem. 31:75-82(2016) [PubMed] [EuropePMC]