Reaction participants Show >> << Hide
- Name help_outline D-glucarate Identifier CHEBI:30612 (Beilstein: 3909239) help_outline Charge -2 Formula C6H8O8 InChIKeyhelp_outline DSLZVSRJTYRBFB-LLEIAEIESA-L SMILEShelp_outline O[C@@H]([C@H](O)[C@@H](O)C([O-])=O)[C@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28474 | RHEA:28475 | RHEA:28476 | RHEA:28477 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli.
Monterrubio R., Baldoma L., Obradors N., Aguilar J., Badia J.
Genes for D-galactarate (gar) and D-glucarate (gud) metabolism in Escherichia coli are organized in three transcriptional units: garD, garPLRK, and gudPD. Two observations suggested a common regulator for the three operons. (i) Their expression was triggered by D-galactarate, D-glucarate, and D-gl ... >> More
Genes for D-galactarate (gar) and D-glucarate (gud) metabolism in Escherichia coli are organized in three transcriptional units: garD, garPLRK, and gudPD. Two observations suggested a common regulator for the three operons. (i) Their expression was triggered by D-galactarate, D-glucarate, and D-glycerate. (ii) Metabolism of the three compounds was impaired by a single Tn5 insertion mapped in the yaeG gene (proposed name, sdaR), outside the D-galactarate and D-glucarate systems. Expression of the sdaR gene is autogenously regulated. << Less
J. Bacteriol. 182:2672-2674(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli.
Hubbard B.K., Koch M., Palmer D.R., Babbitt P.C., Gerlt J.A.
The genes encoding the enzymes in the (D)-glucarate/galactarate catabolic pathway have been identified in the Escherichia coli genome. These encode, in three transcriptional units, (D)-glucarate dehydratase (GlucD), galactarate dehydratase, 5-keto-4-deoxy-(D)-glucarate aldolase, tartronate semiald ... >> More
The genes encoding the enzymes in the (D)-glucarate/galactarate catabolic pathway have been identified in the Escherichia coli genome. These encode, in three transcriptional units, (D)-glucarate dehydratase (GlucD), galactarate dehydratase, 5-keto-4-deoxy-(D)-glucarate aldolase, tartronate semialdehyde reductase, a glycerate kinase that generates 2-phosphoglycerate as product, and two hexaric acid transporters. We also have identified a gene proximal to that encoding GlucD that encodes a protein that is 72% identical in primary sequence to GlucD (GlucD-related protein or GlucDRP). However, whereas GlucD catalyzes the efficient dehydration of both (D)-glucarate and (L)-idarate as well as their epimerization, GlucDRP is significantly impaired in both reactions. Perhaps GlucDRP is an example of gene duplication and evolution in progress in the E. coli chromosome. << Less
Biochemistry 37:14369-14375(1998) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.