Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline N-acetylneuraminate Identifier CHEBI:35418 Charge -1 Formula C11H18NO9 InChIKeyhelp_outline SQVRNKJHWKZAKO-LUWBGTNYSA-M SMILEShelp_outline [H][C@]1(OC(O)(C[C@H](O)[C@H]1NC(C)=O)C([O-])=O)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:28987 | RHEA:28988 | RHEA:28989 | RHEA:28990 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides.
Mancini G.M., Beerens C.E., Aula P.P., Verheijen F.W.
A defective efflux of free sialic acid from the lysosomal compartment has been found in the clinically heterogeneous group of sialic acid storage disorders. Using radiolabeled sialic acid (NeuAc) as a substrate, we have recently detected and characterized a proton-driven carrier for sialic acid in ... >> More
A defective efflux of free sialic acid from the lysosomal compartment has been found in the clinically heterogeneous group of sialic acid storage disorders. Using radiolabeled sialic acid (NeuAc) as a substrate, we have recently detected and characterized a proton-driven carrier for sialic acid in the lysosomal membrane from rat liver. This carrier also recognizes and transports other acidic monosaccharides, among which are uronic acids. If no alternative routes of glucuronic acid transport exist, the disposal of uronic acids can be affected in the sialic acid storage disorders. In this study we excluded the existence of more than one acidic monosaccharide carrier by measuring uptake kinetics of labeled glucuronic acid [( 3H]GlcAc) in rat lysosomal membrane vesicles. [3H]GlcAc uptake was carrier-mediated with an affinity constant of transport (Kt) of 0.3 mM and the transport could be cis-inhibited or trans-stimulated to the same extent by sialic acid or glucuronic acid. Human lysosomal membrane vesicles isolated from cultured fibroblasts showed the existence of a similar proton-driven transporter with the same properties as the rat liver system (Kt of [3H]GlcAc uptake 0.28 mM). Uptake studies with [3H]NeuAc and [3H]GlcAc in resealed lysosome membrane vesicles from cultured fibroblasts of patients with different clinical presentation of sialic acid storage showed defective carrier-mediated transport for both sugars. Further evidence that the defective transport of acidic sugars represents the primary genetic defect in sialic acid storage diseases was provided by the observation of reduced, half-normal transport rates in lymphoblast-derived lysosomal membrane vesicles from five unrelated obligate heterozygotes. This study reports the first observation of a human lysosomal transport defect for multiple physiological compounds. << Less
J Clin Invest 87:1329-1335(1991) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides.
Mancini G.M., de Jonge H.R., Galjaard H., Verheijen F.W.
Highly purified lysosomal membrane vesicles, obtained from rat liver lysosomes, were used to study characteristics of NeuAc transport across the lysosomal membrane. Uptake of [14C]NeuAc was found to be strongly influenced by a pH gradient across the membrane. When a proton gradient (pHin greater t ... >> More
Highly purified lysosomal membrane vesicles, obtained from rat liver lysosomes, were used to study characteristics of NeuAc transport across the lysosomal membrane. Uptake of [14C]NeuAc was found to be strongly influenced by a pH gradient across the membrane. When a proton gradient (pHin greater than pHout) was generated by impermeable buffers, NeuAc uptake above equilibrium level (overshoot) was observed. The influence of membrane diffusion potentials was ruled out by experiments where K+ and valinomycin were present. The overshoot appeared to be specifically produced by protons, since gradients of other cations (Na+ and K+) did not give stimulation. Proton-driven uptake was saturable (Kt = 0.24 mM) and mediated by a single system, as shown by linearity of the Scatchard plot. Stimulation of transport was also obtained by preincubation of vesicles with MgATP and the effect was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, but not by the protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Monocarboxylic sugars like glycuronic acids were competitive inhibitors of sialic acid transport. Transstimulation of [14C] NeuAc uptake was observed when vesicles were preloaded either with unlabeled NeuAc or with glucuronic acid. The data demonstrate that lysosomal membrane vesicles from rat liver are a suitable system for kinetic studies of solute transport events. The presence of a proton-driven carrier in the lysosomal membrane specific for sialic acid and other acidic sugars, including glucuronic acid, is shown. The possible physiological significance of these findings for the human lysosomal carrier and the patients with a sialic acid transport defect is discussed. << Less
-
Functional characterization of vesicular excitatory amino acid transport by human sialin.
Miyaji T., Omote H., Moriyama Y.
Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Δψ)-driven aspartate and glutamate transport into synaptic vesicles in addition to H+/sialic acid co-transport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not tr ... >> More
Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Δψ)-driven aspartate and glutamate transport into synaptic vesicles in addition to H+/sialic acid co-transport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not transport aspartate and glutamate whereas H+/sialic acid co-transport activity was about one-third of the wild-type protein. In this study, we investigate the effects of various mutations on the transport activities of human sialin. Proteoliposomes containing purified heterologously expressed human sialin exhibited both Δψ-driven aspartate and glutamate transport activity and H+/sialic acid co-transport activity. Aspartate and glutamate transport was not detected in the R39C and K136E mutant forms of SLC17A5 protein associated with Salla disease, whereas H+/sialic acid co-transport activity corresponded to 30-50% of the recombinant wild-type protein. In contrast, SLC17A5 protein harboring the mutations associated with infantile sialic acid storage disease, H183R and Δ268SSLRN272 still showed normal levels of Δψ-driven aspartate and glutamate transport even though H+/sialic acid co-transport activity was absent. Human sialin carrying the G328E mutation that causes both phenotypes, and P334R and G378V mutations that cause infantile sialic acid storage disease showed no transport activity. These results support the idea that people suffering from Salla disease have been defective in aspartergic and glutamatergic neurotransmissions. << Less
J. Neurochem. 119:1-5(2011) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.