Reaction participants Show >> << Hide
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline uracil Identifier CHEBI:17568 (Beilstein: 606623; CAS: 66-22-8) help_outline Charge 0 Formula C4H4N2O2 InChIKeyhelp_outline ISAKRJDGNUQOIC-UHFFFAOYSA-N SMILEShelp_outline O=c1cc[nH]c(=O)[nH]1 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29239 | RHEA:29240 | RHEA:29241 | RHEA:29242 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Structure and mechanism of the uracil transporter UraA.
Lu F., Li S., Jiang Y., Jiang J., Fan H., Lu G., Deng D., Dang S., Zhang X., Wang J., Yan N.
The nucleobase/ascorbate transporter (NAT) proteins, also known as nucleobase/cation symporter 2 (NCS2) proteins, are responsible for the uptake of nucleobases in all kingdoms of life and for the transport of vitamin C in mammals. Despite functional characterization of the NAT family members in ba ... >> More
The nucleobase/ascorbate transporter (NAT) proteins, also known as nucleobase/cation symporter 2 (NCS2) proteins, are responsible for the uptake of nucleobases in all kingdoms of life and for the transport of vitamin C in mammals. Despite functional characterization of the NAT family members in bacteria, fungi and mammals, detailed structural information remains unavailable. Here we report the crystal structure of a representative NAT protein, the Escherichia coli uracil/H(+) symporter UraA, in complex with uracil at a resolution of 2.8 Å. UraA has a novel structural fold, with 14 transmembrane segments (TMs) divided into two inverted repeats. A pair of antiparallel β-strands is located between TM3 and TM10 and has an important role in structural organization and substrate recognition. The structure is spatially arranged into a core domain and a gate domain. Uracil, located at the interface between the two domains, is coordinated mainly by residues from the core domain. Structural analysis suggests that alternating access of the substrate may be achieved through conformational changes of the gate domain. << Less