Enzymes
UniProtKB help_outline | 1,907 proteins |
Reaction participants Show >> << Hide
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 263 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29439 | RHEA:29440 | RHEA:29441 | RHEA:29442 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress.
Grass G., Otto M., Fricke B., Haney C.J., Rensing C., Nies D.H., Munkelt D.
The Escherichia coli yiiP gene encodes an iron transporter, ferrous iron efflux (FieF), which belongs to the cation diffusion facilitator family (CDF). Transcription of fieF correlated with iron concentration; however, expression appeared to be independent of the ferrous iron uptake regulator Fur. ... >> More
The Escherichia coli yiiP gene encodes an iron transporter, ferrous iron efflux (FieF), which belongs to the cation diffusion facilitator family (CDF). Transcription of fieF correlated with iron concentration; however, expression appeared to be independent of the ferrous iron uptake regulator Fur. Absence of FieF led to decreased growth of E. coli cells in complex growth medium but only if fur was additionally deleted. The presence of EDTA was partially able to relieve this growth deficiency. Expression of fieF in trans rendered the double deletion strain more tolerant to iron. Furthermore, E. coli cells exhibited reduced accumulation of (55)Fe when FieF was expressed in trans. FieF catalyzed active efflux of Zn(II) in antiport with protons energized by NADH via the transmembrane pH gradient in everted membrane vesicles. Using the iron-sensitive fluorescent indicator PhenGreen-SK encapsulated in proteoliposomes, transmembrane fluxes of iron cations were measured with purified and reconstituted FieF by fluorescence quenching. This suggests that FieF is an iron and zinc efflux system, which would be the first example of iron detoxification by efflux in any organism. << Less
Arch. Microbiol. 183:9-18(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter.
Goswami T., Bhattacharjee A., Babal P., Searle S., Moore E., Li M., Blackwell J.M.
In mammals, natural-resistance-associated macrophage protein 1 (Nramp1) regulates macrophage activation and is associated with infectious and autoimmune diseases. Nramp2 is associated with anaemia. Both belong to a highly conserved eukaryote/prokaryote protein family. We used Xenopus oocytes to de ... >> More
In mammals, natural-resistance-associated macrophage protein 1 (Nramp1) regulates macrophage activation and is associated with infectious and autoimmune diseases. Nramp2 is associated with anaemia. Both belong to a highly conserved eukaryote/prokaryote protein family. We used Xenopus oocytes to demonstrate that, like Nramp2, Nramp1 is a bivalent cation (Fe2+, Zn2+ and Mn2+) transporter. Strikingly, however, where Nramp2 is a symporter of H+ and metal ions, Nramp1 is a highly pH-dependent antiporter that fluxes metal ions in either direction against a proton gradient. At pH 9.0, oocytes injected with cRNA from wild-type murine Nramp1 with a glycine residue at position 169 (Nramp1(G169); P=3.22x10(-6)) and human NRAMP1 (P=3.87x10(-5)) showed significantly enhanced uptake of radiolabelled Zn2+ compared with water-injected controls. At pH 5.5, Nramp1(G169) (P=1.34x10(-13)) and NRAMP1 (P=1.09x10(-6)) oocytes showed significant efflux of Zn2+. Zn2+ transport was abolished when the proton gradient was dissipated using carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Using pre-acidified oocytes, currents of 130+/-57 nA were evoked by 100 microM Zn2+ at pH 7.5, and 139+/-47 nA by 100 microM Fe2+ at pH 7.0, in Nramp1(G169) oocytes; currents of 254+/-49 nA and 242+/-26 nA were evoked, respectively, in NRAMP1 oocytes. Steady-state currents evoked by increasing concentrations of Zn2+ were saturable, with apparent affinity constants of approx. 614 nM for Nramp1(G169) and approx. 562 nM for NRAMP1 oocytes, and a curvilinear voltage dependence of transporter activity (i.e. the data points approximate to a curve that approaches a linear asymptote). In the present study we propose a new model for metal ion homoeostasis in macrophages. Under normal physiological conditions, Nramp2, localized to early endosomal membranes, delivers extracellularly acquired bivalent cations into the cytosol. Nramp1, localized to late endosomal/lysosomal membranes, delivers bivalent cations from the cytosol into this acidic compartment where they may directly affect antimicrobial activity. << Less
Biochem. J. 354:511-519(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.