Enzymes
UniProtKB help_outline | 2,687 proteins |
Reaction participants Show >> << Hide
- Name help_outline (3S)-hydroxyhexadecanoyl-CoA Identifier CHEBI:62613 Charge -4 Formula C37H62N7O18P3S InChIKeyhelp_outline DEHLMTDDPWDRDR-BCIKBWLNSA-J SMILEShelp_outline CCCCCCCCCCCCC[C@H](O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,171 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxohexadecanoyl-CoA Identifier CHEBI:57349 Charge -4 Formula C37H60N7O18P3S InChIKeyhelp_outline NQMPLXPCRJOSHL-BBECNAHFSA-J SMILEShelp_outline CCCCCCCCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,331 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,102 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31159 | RHEA:31160 | RHEA:31161 | RHEA:31162 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients.
Kamijo T., Wanders R.J., Saudubray J.-M., Aoyama T., Komiyama A., Hashimoto T.
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The followi ... >> More
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The following results were obtained. (a) In cells from patient 1, immunoblot analysis and pulse-chase experiments indicated that the content of trifunctional protein was < 10% of that in control cells, due to a very rapid degradation of protein newly synthesized in the mitochondria. The diminution of trifunctional protein was associated with a decreased activity of enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase, when measured using medium-chain to long-chain substrates. (b) In cells from patient 2, the rate of degradation of newly synthesized trifunctional protein was faster than that in control cells, giving rise to a trifunctional protein amounting to 60% of the control levels. The 3-hydroxy-acyl-CoA dehydrogenase activity with medium-chain to long-chain substrates was decreased drastically, with minor changes in activities of the two other enzymes. These data suggest a subtle abnormality of trifunctional protein in cells from patient 2. Taken together, the results obtained show that in both patients, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is caused by an abnormality in the trifunctional protein, even though there is a heterogeneity in both patients. << Less
J. Clin. Invest. 93:1740-1747(1994) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
The mitochondrial long-chain trifunctional enzyme: 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase.
Middleton B.
Biochem. Soc. Trans. 22:427-431(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Molecular characterization of mitochondrial trifunctional protein deficiency: formation of the enzyme complex is important for stabilization of both alpha- and beta-subunits.
Ushikubo S., Aoyama T., Kamijo T., Wanders R.J.A., Rinaldo P., Vockley J., Hashimoto T.
Mitochondrial trifunctional protein (TP) is an enzyme complex with three activities: enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. Studies on defects in this enzyme in patients with TP deficiency suggest that there are two types of defect. Patients in group 1 h ... >> More
Mitochondrial trifunctional protein (TP) is an enzyme complex with three activities: enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. Studies on defects in this enzyme in patients with TP deficiency suggest that there are two types of defect. Patients in group 1 have normal amount of cross-reacting material by immunoblot and lack only long-chain 3-hydroxyacyl-CoA dehydrogenase activity. Patients in group 2 have a trace amount of cross-reacting material, with all three activities being low. We identified three patients in group 2, and analysis was made at the cDNA level. In patient 2, there was a heterozygous 71-bp deletion at position 110-180 in the alpha-subunit. In patients 1 and 3, there was an abnormal beta-subunit; patient 1 had an A-788-to-G substitution, and patient 3 had G-182-to-A and G-740-to-A substitutions in each of separate alleles. This is the first demonstration of disease-causing mutations in the beta-subunit. cDNA-expression experiments in patients' fibroblasts, using a vaccinia virus system, and gel filtration analysis, using patients' fibroblasts, revealed that the existence of both normal alpha- and beta-subunits, and possibly their association, are important for stabilizing TP and that A-788-to-G substitution on the beta-subunit in patient 1 seems to interfere with the association, the result being a rapid decomposition of TP. << Less
Am. J. Hum. Genet. 58:979-988(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
A human brain L-3-hydroxyacyl-coenzyme A dehydrogenase is identical to an amyloid beta-peptide-binding protein involved in Alzheimer's disease.
He X.Y., Schulz H., Yang S.Y.
A novel L-3-hydroxyacyl-CoA dehydrogenase from human brain has been cloned, expressed, purified, and characterized. This enzyme is a homotetramer with a molecular mass of 108 kDa. Its subunit consists of 261 amino acid residues and has structural features characteristic of short chain dehydrogenas ... >> More
A novel L-3-hydroxyacyl-CoA dehydrogenase from human brain has been cloned, expressed, purified, and characterized. This enzyme is a homotetramer with a molecular mass of 108 kDa. Its subunit consists of 261 amino acid residues and has structural features characteristic of short chain dehydrogenases. It was found that the amino acid sequence of this human brain enzyme is identical to that of an endoplasmic reticulum amyloid beta-peptide-binding protein (ERAB), which mediates neurotoxicity in Alzheimer's disease (Yan, S. D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A., and Stern, D. (1997) Nature 389, 689-695). The purification of human brain short chain L-3-hydroxyacyl-CoA dehydrogenase made it possible to characterize the structural and catalytic properties of ERAB. This NAD+-dependent dehydrogenase catalyzes the reversible oxidation of L-3-hydroxyacyl-CoAs to form 3-ketoacyl-CoAs, but it does not act on the D-isomers. The catalytic rate constant of the purified enzyme was estimated to be 37 s-1 with apparent Km values of 89 and 20 microM for acetoacetyl-CoA and NADH, respectively. The activity ratio of this enzyme for substrates with chain lengths of C4, C8, and C16 was approximately 1:2:2. The human short chain L-3-hydroxyacyl-CoA dehydrogenase gene is organized into six exons and five introns and maps to chromosome Xp11.2. The amino-terminal NAD-binding region of the dehydrogenase is encoded by the first three exons, whereas the other exons code for the carboxyl-terminal substrate-binding region harboring putative catalytic residues. The results of this study lead to the conclusion that ERAB involved in neuronal dysfunction is encoded by the human short chain L-3-hydroxyacyl-CoA dehydrogenase gene. << Less
-
Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids.
Ferdinandusse S., Denis S., Van Roermund C.W., Wanders R.J., Dacremont G.
Dicarboxylic acids (DCAs) are omega-oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via beta-oxidation. Although it has been studied extensively where this beta-oxidation process takes place, the intracellular ... >> More
Dicarboxylic acids (DCAs) are omega-oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via beta-oxidation. Although it has been studied extensively where this beta-oxidation process takes place, the intracellular site of DCA oxidation has remained controversial. Making use of fibroblasts from patients with defined mitochondrial and peroxisomal fatty acid oxidation defects, we show in this paper that peroxisomes, and not mitochondria, are involved in the beta-oxidation of C16DCA. Additional studies in fibroblasts from patients with X-linked adrenoleukodystrophy, straight-chain acyl-CoA oxidase (SCOX) deficiency, d-bifunctional protein (DBP) deficiency, and rhizomelic chondrodysplasia punctata type 1, together with direct enzyme measurements with human recombinant l-bifunctional protein (LBP) and DBP expressed in a fox2 deletion mutant of Saccharomyces cerevisiae, show that the main enzymes involved in beta-oxidation of C16DCA are SCOX, both LBP and DBP, and sterol carrier protein X, possibly together with the classic 3-ketoacyl-CoA thiolase. This is the first indication of a specific function for LBP, which has remained elusive until now. << Less
J. Lipid Res. 45:1104-1111(2004) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.