Enzymes
UniProtKB help_outline | 2,842 proteins |
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 346 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline decanoyl-CoA Identifier CHEBI:61430 Charge -4 Formula C31H50N7O17P3S InChIKeyhelp_outline CNKJPHSEFDPYDB-HSJNEKGZSA-J SMILEShelp_outline CCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-oxododecanoyl-CoA Identifier CHEBI:62615 Charge -4 Formula C33H52N7O18P3S InChIKeyhelp_outline HQANBZHVWIDNQZ-GMHMEAMDSA-J SMILEShelp_outline CCCCCCCCCC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,494 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31183 | RHEA:31184 | RHEA:31185 | RHEA:31186 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients.
Kamijo T., Wanders R.J., Saudubray J.-M., Aoyama T., Komiyama A., Hashimoto T.
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The followi ... >> More
We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The following results were obtained. (a) In cells from patient 1, immunoblot analysis and pulse-chase experiments indicated that the content of trifunctional protein was < 10% of that in control cells, due to a very rapid degradation of protein newly synthesized in the mitochondria. The diminution of trifunctional protein was associated with a decreased activity of enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase, when measured using medium-chain to long-chain substrates. (b) In cells from patient 2, the rate of degradation of newly synthesized trifunctional protein was faster than that in control cells, giving rise to a trifunctional protein amounting to 60% of the control levels. The 3-hydroxy-acyl-CoA dehydrogenase activity with medium-chain to long-chain substrates was decreased drastically, with minor changes in activities of the two other enzymes. These data suggest a subtle abnormality of trifunctional protein in cells from patient 2. Taken together, the results obtained show that in both patients, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is caused by an abnormality in the trifunctional protein, even though there is a heterogeneity in both patients. << Less
J. Clin. Invest. 93:1740-1747(1994) [PubMed] [EuropePMC]
This publication is cited by 8 other entries.
-
Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates.
Antonenkov V.D., Van Veldhoven P.P., Waelkens E., Mannaerts G.P.
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (th ... >> More
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (thiolase A) by N-terminal amino acid sequencing. The second enzyme preparation consisted of a 58- and a 46-kDa band. The 58-kDa polypeptide reacted with antibodies raised against either sterol carrier protein 2 or the thiolase domain of sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCP-2/thiolase), formerly also called sterol carrier protein X, whereas the 46-kDa polypeptide reacted only with the antibodies raised against the thiolase domain. Internal peptide sequencing confirmed that the 58-kDa polypeptide is SCP-2/thiolase and that the 46-kDa polypeptide is the thiolase domain of SCP-2/thiolase. Thiolase A catalyzed the cleavage of short, medium, and long straight chain 3-oxoacyl-CoAs, medium chain 3-oxoacyl-CoAs being the best substrates. The enzyme was inactive with the 2-methyl-branched 3-oxo-2-methylpalmitoyl-CoA and with the bile acid intermediate 24-oxo-trihydroxycoprostanoyl-CoA. SCP-2/thiolase was active with medium and long straight chain 3-oxoacyl-CoAs but also with the 2-methyl-branched 3-oxoacyl-CoA and the bile acid intermediate. In peroxisomal extracts, more than 90% of the thiolase activity toward straight chain 3-oxoacyl-CoAs was associated with thiolase A. Kinetic parameters (Km and Vmax) were determined for each enzyme with the different substrates. Our results indicate the following: 1) the two (main) thiolases present in peroxisomes from normal rat liver are thiolase A and SCP-2/thiolase; 2) thiolase A is responsible for the thiolytic cleavage of straight chain 3-oxoacyl-CoAs; and 3) SCP-2/thiolase is responsible for the thiolytic cleavage of the 3-oxoacyl-CoA derivatives of 2-methyl-branched fatty acids and the side chain of cholesterol. << Less
J. Biol. Chem. 272:26023-26031(1997) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.