Enzymes
UniProtKB help_outline | 1 proteins |
Reaction participants Show >> << Hide
- Name help_outline D-sedoheptulose 7-phosphate Identifier CHEBI:57483 (Beilstein: 5106241) help_outline Charge -2 Formula C7H13O10P InChIKeyhelp_outline JDTUMPKOJBQPKX-GBNDHIKLSA-L SMILEShelp_outline OCC(=O)[C@@H](O)[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-sedoheptulose 1,7-bisphosphate Identifier CHEBI:58335 Charge -4 Formula C7H12O13P2 InChIKeyhelp_outline OKHXOUGRECCASI-SHUUEZRQSA-J SMILEShelp_outline O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H](O)[C@H](O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:31443 | RHEA:31444 | RHEA:31445 | RHEA:31446 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism.
Nakahigashi K., Toya Y., Ishii N., Soga T., Hasegawa M., Watanabe H., Takai Y., Honma M., Mori H., Tomita M.
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple-knockout mutants involved in central carbon catabolism in Escherichia ... >> More
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple-knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico predictions and experimental growth indicated that unreported reactions existed within this extensively analyzed metabolic network. These putative reactions were then confirmed by metabolome analysis and in vitro enzymatic assays. Novel reactions regarding the breakdown of sedoheptulose-7-phosphate to erythrose-4-phosphate and dihydroxyacetone phosphate were observed in transaldolase-deficient mutants, without any noticeable changes in gene expression. These reactions, triggered by an accumulation of sedoheptulose-7-phosphate, were catalyzed by the universally conserved glycolytic enzymes ATP-dependent phosphofructokinase and aldolase. The emergence of an alternative pathway not requiring any changes in gene expression, but rather relying on the accumulation of an intermediate metabolite may be a novel mechanism mediating the robustness of these metabolic networks. << Less
Mol. Syst. Biol. 5:306-306(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.