Reaction participants Show >> << Hide
- Name help_outline L-phenylalanine Identifier CHEBI:58095 Charge 0 Formula C9H11NO2 InChIKeyhelp_outline COLNVLDHVKWLRT-QMMMGPOBSA-N SMILEShelp_outline [NH3+][C@@H](Cc1ccccc1)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 78 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
reduced [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11964
Reactive part
help_outline
- Name help_outline FMNH2 Identifier CHEBI:57618 (Beilstein: 6258176) help_outline Charge -2 Formula C17H21N4O9P InChIKeyhelp_outline YTNIXZGTHTVJBW-SCRDCRAPSA-L SMILEShelp_outline Cc1cc2Nc3c([nH]c(=O)[nH]c3=O)N(C[C@H](O)[C@H](O)[C@H](O)COP([O-])([O-])=O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 852 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (E)-phenylacetaldehyde oxime Identifier CHEBI:47793 (Beilstein: 2612538) help_outline Charge 0 Formula C8H9NO InChIKeyhelp_outline CXISHLWVCSLKOJ-VQHVLOKHSA-N SMILEShelp_outline C1=CC=CC=C1C\C=N\O 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
oxidized [NADPH—hemoprotein reductase]
Identifier
RHEA-COMP:11965
Reactive part
help_outline
- Name help_outline FMN Identifier CHEBI:58210 Charge -3 Formula C17H18N4O9P InChIKeyhelp_outline ANKZYBDXHMZBDK-SCRDCRAPSA-K SMILEShelp_outline C12=NC([N-]C(C1=NC=3C(N2C[C@@H]([C@@H]([C@@H](COP(=O)([O-])[O-])O)O)O)=CC(=C(C3)C)C)=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 861 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,058 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:33263 | RHEA:33264 | RHEA:33265 | RHEA:33266 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc.
Yamaguchi T., Yamamoto K., Asano Y.
Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversio ... >> More
Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of L-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of L-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min(−1), respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling. << Less
Plant Mol. Biol. 86:215-223(2014) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.
-
Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate.
Wittstock U., Halkier B.A.
Glucosinolates are natural plant products gaining increasing interest as cancer-preventing agents and crop protectants. Similar to cyanogenic glucosides, glucosinolates are derived from amino acids and have aldoximes as intermediates. We report cloning and characterization of cytochrome P450 CYP79 ... >> More
Glucosinolates are natural plant products gaining increasing interest as cancer-preventing agents and crop protectants. Similar to cyanogenic glucosides, glucosinolates are derived from amino acids and have aldoximes as intermediates. We report cloning and characterization of cytochrome P450 CYP79A2 involved in aldoxime formation in the glucosinolate-producing Arabidopsis thaliana L. The CYP79A2 cDNA was cloned by polymerase chain reaction, and CYP79A2 was functionally expressed in Escherichia coli. Characterization of the recombinant protein shows that CYP79A2 is an N-hydroxylase converting L-phenylalanine into phenylacetaldoxime, the precursor of benzylglucosinolate. Transgenic A. thaliana constitutively expressing CYP79A2 accumulate high levels of benzylglucosinolate. CYP79A2 expressed in E. coli has a K(m) of 6.7 micromol liter(-1) for L-phenylalanine. Neither L-tyrosine, L-tryptophan, L-methionine, nor DL-homophenylalanine are metabolized by CYP79A2, indicating that the enzyme has a narrow substrate specificity. CYP79A2 is the first enzyme shown to catalyze the conversion of an amino acid to the aldoxime in the biosynthesis of glucosinolates. Our data provide the first conclusive evidence that evolutionarily conserved cytochromes P450 catalyze this step common for the biosynthetic pathways of glucosinolates and cyanogenic glucosides. This strongly indicates that the biosynthesis of glucosinolates has evolved based on a cyanogenic predisposition. << Less
J. Biol. Chem. 275:14659-14666(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
Comments
Multi-step reaction: RHEA:24992 + RHEA:24996 + RHEA:25000