Reaction participants Show >> << Hide
- Name help_outline an N-acylsphinganine Identifier CHEBI:31488 Charge 0 Formula C19H38NO3R SMILEShelp_outline CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 55 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol) Identifier CHEBI:57880 Charge -1 Formula C11H16O13PR2 SMILEShelp_outline [C@@H]1([C@@H]([C@@H]([C@@H]([C@H]([C@@H]1O)O)O)O)OP(OC[C@@H](COC(=O)*)OC(=O)*)(=O)[O-])O 2D coordinates Mol file for the small molecule Search links Involved in 71 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline an N-acylsphinganine-(1D-myo-inositol) Identifier CHEBI:64941 Charge -1 Formula C25H48NO11PR SMILEShelp_outline CCCCCCCCCCCCCCC[C@@H](O)[C@H](COP([O-])(=O)O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycerol Identifier CHEBI:17815 Charge 0 Formula C5H6O5R2 SMILEShelp_outline OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 196 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:33475 | RHEA:33476 | RHEA:33477 | RHEA:33478 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Developmentally regulated sphingolipid synthesis in African trypanosomes.
Sutterwala S.S., Hsu F.F., Sevova E.S., Schwartz K.J., Zhang K., Key P., Turk J., Beverley S.M., Bangs J.D.
Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid syn ... >> More
Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream-stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labelling confirmed stage-specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased more than threefold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six-transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian sphingomyelin synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites. << Less
Mol. Microbiol. 70:281-296(2008) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Sphingolipid functions in Saccharomyces cerevisiae.
Dickson R.C., Lester R.L.
Recent advances in understanding sphingolipid metabolism and function in Saccharomyces cerevisiae have moved the field from an embryonic, descriptive phase to one more focused on molecular mechanisms. One advance that has aided many experiments has been the uncovering of genes for the biosynthesis ... >> More
Recent advances in understanding sphingolipid metabolism and function in Saccharomyces cerevisiae have moved the field from an embryonic, descriptive phase to one more focused on molecular mechanisms. One advance that has aided many experiments has been the uncovering of genes for the biosynthesis and breakdown of sphingolipids. S. cerevisiae seems on the verge of becoming the first organism in which all sphingolipid metabolic genes are identified. Other advances include the demonstration that S. cerevisiae cells have lipid rafts composed of sphingolipids and ergosterol and that specific proteins associate with rafts. Roles for phytosphingosine (PHS) and dihydrosphingosine (DHS) in heat stress continue to be uncovered including regulation of the transient cell cycle arrest, control of putative signaling pathways that govern cell integrity, endocytosis, movement of the cortical actin cytoskeleton and regulation of protein breakdown in the plasma membrane. Other studies suggest roles for sphingolipids in exocytosis, growth regulation and longevity. Finally, some progress has been made in understanding how sphingolipid synthesis is regulated and how sphingolipid levels are maintained. << Less
Biochim Biophys Acta 1583:13-25(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.