Reaction participants Show >> << Hide
- Name help_outline sphinganine Identifier CHEBI:57817 Charge 1 Formula C18H40NO2 InChIKeyhelp_outline OTKJDMGTUTTYMP-ZWKOTPCHSA-O SMILEShelp_outline CCCCCCCCCCCCCCC[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 37 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(II)-[cytochrome b5]
Identifier
RHEA-COMP:10438
Reactive part
help_outline
- Name help_outline Fe2+ Identifier CHEBI:29033 (CAS: 15438-31-0) help_outline Charge 2 Formula Fe InChIKeyhelp_outline CWYNVVGOOAEACU-UHFFFAOYSA-N SMILEShelp_outline [Fe++] 2D coordinates Mol file for the small molecule Search links Involved in 263 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,727 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (4R)-hydroxysphinganine Identifier CHEBI:64124 Charge 1 Formula C18H40NO3 InChIKeyhelp_outline AERBNCYCJBRYDG-KSZLIROESA-O SMILEShelp_outline CCCCCCCCCCCCCC[C@@H](O)[C@@H](O)[C@@H]([NH3+])CO 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
Fe(III)-[cytochrome b5]
Identifier
RHEA-COMP:10439
Reactive part
help_outline
- Name help_outline Fe3+ Identifier CHEBI:29034 (CAS: 20074-52-6) help_outline Charge 3 Formula Fe InChIKeyhelp_outline VTLYFUHAOXGGBS-UHFFFAOYSA-N SMILEShelp_outline [Fe+3] 2D coordinates Mol file for the small molecule Search links Involved in 248 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:33519 | RHEA:33520 | RHEA:33521 | RHEA:33522 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae.
Grilley M.M., Stock S.D., Dickson R.C., Lester R.L., Takemoto J.Y.
The Saccharomyces cerevisiae gene SYR2, necessary for growth inhibition by the cyclic lipodepsipeptide syringomycin E, is shown to be required for 4-hydroxylation of long chain bases in sphingolipid biosynthesis. Four lines of support for this conclusion are presented: (a) the predicted Syr2p show ... >> More
The Saccharomyces cerevisiae gene SYR2, necessary for growth inhibition by the cyclic lipodepsipeptide syringomycin E, is shown to be required for 4-hydroxylation of long chain bases in sphingolipid biosynthesis. Four lines of support for this conclusion are presented: (a) the predicted Syr2p shows sequence similarity to diiron-binding membrane enzymes involved in oxygen-dependent modifications of hydrocarbon substrates, (b) yeast strains carrying a disrupted SYR2 allele produced sphingoid long chain bases lacking the 4-hydroxyl group present in wild type strains, (c) 4-hydroxylase activity was increased in microsomes prepared from a SYR2 overexpression strain, and (d) the syringomycin E resistance phenotype of a syr2 mutant strain was suppressed when grown under conditions in which exogenous 4-hydroxysphingoid long chain bases were incorporated into sphingolipids. The syr2 strain produced wild type levels of sphingolipids, substantial levels of hydroxylated very long chain fatty acids, and the full complement of normal yeast sphingolipid head groups. These results show that the SYR2 gene is required for the 4-hydroxylation reaction of sphingolipid long chain bases, that this hydroxylation is not essential for growth, and that the 4-hydroxyl group of sphingolipids is necessary for syringomycin E action on yeast. << Less
J. Biol. Chem. 273:11062-11068(1998) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Sphingolipid functions in Saccharomyces cerevisiae.
Dickson R.C., Lester R.L.
Recent advances in understanding sphingolipid metabolism and function in Saccharomyces cerevisiae have moved the field from an embryonic, descriptive phase to one more focused on molecular mechanisms. One advance that has aided many experiments has been the uncovering of genes for the biosynthesis ... >> More
Recent advances in understanding sphingolipid metabolism and function in Saccharomyces cerevisiae have moved the field from an embryonic, descriptive phase to one more focused on molecular mechanisms. One advance that has aided many experiments has been the uncovering of genes for the biosynthesis and breakdown of sphingolipids. S. cerevisiae seems on the verge of becoming the first organism in which all sphingolipid metabolic genes are identified. Other advances include the demonstration that S. cerevisiae cells have lipid rafts composed of sphingolipids and ergosterol and that specific proteins associate with rafts. Roles for phytosphingosine (PHS) and dihydrosphingosine (DHS) in heat stress continue to be uncovered including regulation of the transient cell cycle arrest, control of putative signaling pathways that govern cell integrity, endocytosis, movement of the cortical actin cytoskeleton and regulation of protein breakdown in the plasma membrane. Other studies suggest roles for sphingolipids in exocytosis, growth regulation and longevity. Finally, some progress has been made in understanding how sphingolipid synthesis is regulated and how sphingolipid levels are maintained. << Less
Biochim Biophys Acta 1583:13-25(2002) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.