Enzymes
| UniProtKB help_outline | 2 proteins |
| Enzyme class help_outline |
|
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline all-trans-zeaxanthin Identifier CHEBI:27547 (Beilstein: 2068416; CAS: 144-68-3) help_outline Charge 0 Formula C40H56O2 InChIKeyhelp_outline JKQXZKUSFCKOGQ-QAYBQHTQSA-N SMILEShelp_outline CC(\C=C\C=C(C)\C=C\C1=C(C)C[C@@H](O)CC1(C)C)=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C[C@@H](O)CC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3R)-11-cis-3-hydroxyretinal Identifier CHEBI:66898 Charge 0 Formula C20H28O2 InChIKeyhelp_outline QPRQNCDEPWLQRO-NIKQCJNBSA-N SMILEShelp_outline CC(/C=C\C=C(C)\C=C\C1=C(C)C[C@@H](O)CC1(C)C)=C\C=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (3R)-all-trans-3-hydroxyretinal Identifier CHEBI:52228 (Beilstein: 4696111) help_outline Charge 0 Formula C20H28O2 InChIKeyhelp_outline QPRQNCDEPWLQRO-ZCEAMUHZSA-N SMILEShelp_outline [H]C(=O)\C=C(C)\C=C\C=C(C)\C=C\C1=C(C)C[C@@H](O)CC1(C)C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:33931 | RHEA:33932 | RHEA:33933 | RHEA:33934 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide.
Oberhauser V., Voolstra O., Bangert A., von Lintig J., Vogt K.
In animals, successful production of the visual chromophore (11-cis-retinal or derivatives thereof such as 11-cis-3-hydroxy-retinal) is essential for photoreceptor cell function and survival. These carotenoid-derived compounds must combine with a protein moiety (the opsin) to establish functional ... >> More
In animals, successful production of the visual chromophore (11-cis-retinal or derivatives thereof such as 11-cis-3-hydroxy-retinal) is essential for photoreceptor cell function and survival. These carotenoid-derived compounds must combine with a protein moiety (the opsin) to establish functional visual pigments. Evidence from cell culture systems has implicated that the retinal pigment epithelium protein of 65 kDa (RPE65) is the long-sought all-trans to 11-cis retinoid isomerase. RPE65 is structurally related to nonheme iron oxygenases that catalyze the conversion of carotenoids into retinoids. In vertebrate genomes, two carotenoid oxygenases and RPE65 are encoded, whereas in insect genomes only a single representative of this protein family, named NinaB (denoting neither inactivation nor afterpotential mutant B), is encoded. We here cloned and functionally characterized the ninaB gene from the great wax moth Galleria mellonella. We show that the recombinant purified enzyme combines isomerase and oxygenase (isomerooxygenase) activity in a single polypeptide. From kinetics and isomeric composition of cleavage products of asymmetrical carotenoid substrates, we propose a model for the spatial arrangement between substrate and enzyme. In Drosophila, we show that carotenoid-isomerooxygenase activity of NinaB is more generally found in insects, and we provide physiological evidence that carotenoids such as 11-cis-retinal can promote visual pigment biogenesis in the dark. Our study demonstrates that trans/cis isomerase activity can be intrinsic to this class of proteins and establishes these enzymes as key components for both invertebrate and vertebrate vision. << Less
Proc. Natl. Acad. Sci. U.S.A. 105:19000-19005(2008) [PubMed] [EuropePMC]
-
Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal.
von Lintig J., Vogt K.
Vitamin A and its derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation with important clinical implications. It has been known for 50 years that the key step in the formation of vitami ... >> More
Vitamin A and its derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation with important clinical implications. It has been known for 50 years that the key step in the formation of vitamin A is the oxidative cleavage of beta-carotene; however, this enzymatic step has resisted molecular analysis. A novel approach enabled us to clone and identify a beta-carotene dioxygenase from Drosophila melanogaster, expressing it into the background of a beta-carotene (provitamin A)-synthesizing and -accumulating Escherichia coli strain. The carotene-cleaving enzyme, identified here for the first time on the molecular level, is the basis of the numerous branches of vitamin A action and links plant and animal carotene metabolism. << Less