Enzymes
UniProtKB help_outline | 13,299 proteins |
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline Na+ Identifier CHEBI:29101 (CAS: 17341-25-2) help_outline Charge 1 Formula Na InChIKeyhelp_outline FKNQFGJONOIPTF-UHFFFAOYSA-N SMILEShelp_outline [Na+] 2D coordinates Mol file for the small molecule Search links Involved in 257 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:34963 | RHEA:34964 | RHEA:34965 | RHEA:34966 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Gene Ontology help_outline | ||||
Reactome help_outline |
Publications
-
Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm.
Weyand I., Godde M., Frings S., Weiner J., Mueller F., Altenhofen W., Hatt H., Kaupp U.B.
Cyclic nucleotide-gated (CNG) channels serve as downstream targets of signalling pathways in vertebrate photoreceptor cells and olfactory sensory neurons (see ref. 1 for review). Ca2+ ions that enter through CNG channels intimately control these signalling pathways by regulating synthesis or hydro ... >> More
Cyclic nucleotide-gated (CNG) channels serve as downstream targets of signalling pathways in vertebrate photoreceptor cells and olfactory sensory neurons (see ref. 1 for review). Ca2+ ions that enter through CNG channels intimately control these signalling pathways by regulating synthesis or hydrolysis of cyclic nucleotides, and by decreasing ligand sensitivity of CNG channels. Several lines of evidence suggest that cyclic nucleotides and Ca2+ play important roles in chemotaxis of invertebrate sperm and fertilization (see ref. 9 for review), whereas their mechanisms of action in vertebrate sperm are largely unknown. Here we report the cloning and functional expression of a novel CNG channel from bovine testis. The channel polypeptide was functionally localized in sperm, but is also specifically expressed in cone photoreceptor cells. These channels might be involved in chemotaxis of sperm by controlling Ca2+ entry through a cyclic-nucleotide signalling pathway. << Less
Nature 368:859-863(1994) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
The voltage-gated sodium channel TPC1 confers endolysosomal excitability.
Cang C., Bekele B., Ren D.
The physiological function and molecular regulation of plasma membrane potential have been extensively studied, but how intracellular organelles sense and control membrane potential is not well understood. Using whole-organelle patch clamp recording, we show that endosomes and lysosomes are electr ... >> More
The physiological function and molecular regulation of plasma membrane potential have been extensively studied, but how intracellular organelles sense and control membrane potential is not well understood. Using whole-organelle patch clamp recording, we show that endosomes and lysosomes are electrically excitable organelles. In a subpopulation of endolysosomes, a brief electrical stimulus elicits a prolonged membrane potential depolarization spike. The organelles have a previously uncharacterized, depolarization-activated, noninactivating Na(+) channel (lysoNaV). The channel is formed by a two-repeat six-transmembrane-spanning (2×6TM) protein, TPC1, which represents the evolutionary transition between 6TM and 4×6TM voltage-gated channels. Luminal alkalization also opens lysoNaV by markedly shifting the channel's voltage dependence of activation toward hyperpolarization. Thus, TPC1 is a member of a new family of voltage-gated Na(+) channels that senses pH changes and confers electrical excitability to organelles. << Less
-
Electrophysiological characteristics of rat gustatory cyclic nucleotide--gated channel expressed in Xenopus oocytes.
Lee H.M., Park Y.S., Kim W., Park C.S.
The complementary DNA encoding gustatory cyclic nucleotide--gated ion channel (or gustCNG channel) cloned from rat tongue epithelial tissue was expressed in Xenopus oocytes, and its electrophysiological characteristics were investigated using tight-seal patch-clamp recordings of single and macrosc ... >> More
The complementary DNA encoding gustatory cyclic nucleotide--gated ion channel (or gustCNG channel) cloned from rat tongue epithelial tissue was expressed in Xenopus oocytes, and its electrophysiological characteristics were investigated using tight-seal patch-clamp recordings of single and macroscopic channel currents. Both cGMP and cAMP directly activated gustCNG channels but with markedly different affinities. No desensitization or inactivation of gustCNG channel currents was observed even in the prolonged application of the cyclic nucleotides. Single-channel conductance of gustCNG channel was estimated as 28 pS in 130 mM of symmetric Na(+). Single-channel current recordings revealed fast open-close transitions and longer lasting closure states. The distribution of both open and closed events could be well fitted with two exponential components and intracellular cGMP increased the open probability (P(o)) of gustCNG channels mainly by increasing the slower opening rate. Under bi-ionic conditions, the selectivity order of gustCNG channel among divalent cations was determined as Na(+) approximately K(+) > Rb(+) > Li(+) > Cs(+) with the permeability ratio of 1:0.95:0.74:0.63:0.49. Magnesium ion blocked Na(+) currents through gustCNG channels from both intracellular and extracellular sides in voltage-dependent manners. The inhibition constants (K(i)s) of intracellular Mg(2+) were determined as 360 +/- 40 microM at 70 mV and 8.2 +/-1.5 mM at -70 mV with z delta value of 1.04, while K(i)s of extracellular Mg(2+) were as 1.1 +/- 0.3 mM at 70 mV and 20.0 +/-0.1 microM at -70 mV with z delta of 0.94. Although 100 microM l-cis-diltiazem blocked significant portions of outward Na(+) currents through both bovine rod and rat olfactory CNG channels, the gustCNG channel currents were minimally affected by the same concentration of the drug. << Less
J. Neurophysiol. 85:2335-2349(2001) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes.
Wang X., Zhang X., Dong X.P., Samie M., Li X., Cheng X., Goschka A., Shen D., Zhou Y., Harlow J., Zhu M.X., Clapham D.E., Ren D., Xu H.
Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPC ... >> More
Mammalian two-pore channel proteins (TPC1, TPC2; TPCN1, TPCN2) encode ion channels in intracellular endosomes and lysosomes and were proposed to mediate endolysosomal calcium release triggered by the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). By directly recording TPCs in endolysosomes from wild-type and TPC double-knockout mice, here we show that, in contrast to previous conclusions, TPCs are in fact sodium-selective channels activated by PI(3,5)P(2) and are not activated by NAADP. Moreover, the primary endolysosomal ion is Na(+), not K(+), as had been previously assumed. These findings suggest that the organellar membrane potential may undergo large regulatory changes and may explain the specificity of PI(3,5)P(2) in regulating the fusogenic potential of intracellular organelles. << Less
-
Achromatopsia-associated mutation in the human cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit alters the ligand sensitivity and pore properties of heteromeric channels.
Peng C., Rich E.D., Varnum M.D.
Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to form by assembly of two different subunit types, CNGA3 and CNGB3. Recently, mutations in the gene encoding the CNGB3 subunit have been linked to achromatopsia in humans. Here we describe the functional consequences of two ach ... >> More
Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to form by assembly of two different subunit types, CNGA3 and CNGB3. Recently, mutations in the gene encoding the CNGB3 subunit have been linked to achromatopsia in humans. Here we describe the functional consequences of two achromatopsia-associated mutations in human CNGB3 (hCNGB3). Co-expression in Xenopus oocytes of human CNGA3 (hCNGA3) subunits with hCNGB3 subunits containing an achromatopsia-associated mutation in the S6 transmembrane domain (S435F) generated functional heteromeric channels that exhibited an increase in apparent affinity for both cAMP and cGMP compared with wild type heteromeric channels. In contrast, co-expression of a presumptive null mutation of hCNGB3 (T383f.s.Delta C) with hCNGA3 produced channels with properties indistinguishable from homomeric hCNGA3 channels. The effect of hCNGB3 S435F subunits on cell-surface expression of green fluorescent protein-tagged hCNGA3 subunits and of non-tagged hCNGA3 subunits on surface expression of green fluorescent protein-hCNGB3 S435F subunits were similar to those observed for wild type hCNGB3 subunits, suggesting that the mutation does not grossly disturb subunit assembly or plasma membrane targeting. The S435F mutation was also found to produce changes in the pore properties of the channel, including decreased single channel conductance and decreased sensitivity to block by l-cis-diltiazem. Overall, these results suggest that the functional properties of cone CNG channels may be altered in patients with the S435F mutation, providing evidence supporting the pathogenicity of this mutation in humans. Thus, achromatopsia may arise from a disturbance of cone CNG channel gating and permeation or from the absence of functional CNGB3 subunits. << Less
J. Biol. Chem. 278:34533-34540(2003) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.