RHEA:40275
Enzymes help_outline | 11 proteins (UniProtKB) |
Reaction participants Show >> << Hide
- Name help_outline hexadecanedioyl-CoA Identifier CHEBI:77085 Charge -5 Formula C37H59N7O19P3S InChIKeyhelp_outline GTCSHNMTNCXODY-CCAJQFMUSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,235 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-hexadecenedioyl-CoA Identifier CHEBI:77075 Charge -5 Formula C37H57N7O19P3S InChIKeyhelp_outline SJBSPCRLRGPAHQ-OHCWBFRRSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\CCCCCCCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 321 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Links to other resources
RHEA:40275 | RHEA:40276 | RHEA:40277 | RHEA:40278 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Citations
-
Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase.
Van Veldhoven P.P., Vanhove G., Assselberghs S., Eyssen H.J., Mannaerts G.P.
Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidas ... >> More
Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidase activity with different acyl-CoAs. Short chain mono (hexanoyl-) and dicarboxylyl (glutaryl-)-CoAs and prostaglandin E2-CoA were oxidized exclusively by palmitoyl-CoA oxidase. Long chain mono (palmitoyl-) and dicarboxylyl (hexadecanedioyl-)-CoAs were oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the former enzyme catalyzing approximately 70% of the total eluate activity. The very long chain lignoceroyl-CoA was also oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the latter enzyme catalyzing approximately 65% of the total eluate activity. Long chain 2-methyl branched acyl-CoAs (2-methylpalmitoyl-CoA and pristanoyl-CoA) were oxidized for approximately 90% by pristanoyl-CoA oxidase, the remaining activity being catalyzed by trihydroxycoprostanoyl-CoA oxidase. The short chain 2-methylhexanoyl-CoA was oxidized by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase (approximately 60 and 40%, respectively, of the total eluate activity). Trihydroxycoprostanoyl-CoA was oxidized exclusively by trihydroxycoprostanoyl-CoA oxidase. No oxidase activity was found with isovaleryl-CoA and isobutyryl-CoA. Substrate dependences of palmitoyl-CoA oxidase and pristanoyl-CoA oxidase were very similar when assayed with the same (common) substrate. Since the two oxidases were purified to a similar extent and with a similar yield, the contribution of each enzyme to substrate oxidation in the column eluate probably reflects its contribution in the intact liver. << Less
J. Biol. Chem. 267:20065-20074(1992) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Rat liver metabolism of dicarboxylic acids.
Vamecq J., Draye J.P., Brison J.
Recently, we demonstrated in rat liver that dicarboxylic acids containing more than five carbons can be activated by a microsomal dicarboxylyl-CoA synthetase (J. Vamecq, E. de Hoffmann, and F. Van Hoof. Biochem. J. 230: 683-693, 1985). The products of this reaction, dicarboxylyl-CoA esters, were f ... >> More
Recently, we demonstrated in rat liver that dicarboxylic acids containing more than five carbons can be activated by a microsomal dicarboxylyl-CoA synthetase (J. Vamecq, E. de Hoffmann, and F. Van Hoof. Biochem. J. 230: 683-693, 1985). The products of this reaction, dicarboxylyl-CoA esters, were found to be substrates for an H2O2-generating dicarboxylyl-CoA oxidase. In the present work we report that 1) the catalytic center or the essential domains of dicarboxylyl-CoA synthetase are located at the cytosolic aspect of the endoplasmic reticulum membrane; 2) dicarboxylyl-CoA oxidase is optimally active on dodecanedioyl-CoA and is a peroxisomal enzyme; 3) cyanide-insensitive dodecanedioyl-CoA oxidation (NADH production) is catalyzed by rat liver homogenates. Cell fractionation studies disclose that, similar to dodecanedioyl-CoA oxidase (H2O2 production), the cyanide-insensitive dodecanedioyl-CoA oxidizing activity also belongs to peroxisomes; 4) a dodecanedioyl-CoA oxidoreductase reaction can be assayed by the dichlorphenolindophenol procedure in rat liver homogenates, and the activity is abundant in peroxisomal, mitochondrial, and soluble fractions; 5) by contrast with monocarboxylyl-CoA esters, the dicarboxylyl-CoAs are apparently not substrates for mitochondrial fatty acid oxidation; however, the use of dicarboxylylcarnitine esters as direct substrate for mitochondria suggests the existence of an active beta-oxidation of dicarboxylates in these organelles, which is further confirmed by experiments in which mitochondria are permeabilized with digitonin; 6) the in vivo oxidation of infused dodecanedioic acid results in a rapid appearance in urine of medium-chain dicarboxylic acids, with only 30-50% of the infused dose recovered in urine. << Less
Am J Physiol 256:G680-8(1989) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.