RHEA:40312
Reaction with net flow from left to right. help_outline | |
Enzymes help_outline | 8 proteins (UniProtKB) |
Reaction participants Show >> << Hide
- Name help_outline hexanoyl-CoA Identifier CHEBI:62620 Charge -4 Formula C27H42N7O17P3S InChIKeyhelp_outline OEXFMSFODMQEPE-HDRQGHTBSA-J SMILEShelp_outline CCCCCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 20 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,235 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2E)-hexenoyl-CoA Identifier CHEBI:62077 Charge -4 Formula C27H40N7O17P3S InChIKeyhelp_outline OINXHIBNZUUIMR-IXUYQXAASA-J SMILEShelp_outline CCC\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 321 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Links to other resources
RHEA:40311 | RHEA:40312 | RHEA:40313 | RHEA:40314 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Citations
-
A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes.
Hayashi H., De Bellis L., Ciurli A., Kondo M., Hayashi M., Nishimura M.
Short-chain acyl-CoA oxidases are beta-oxidation enzymes that are active on short-chain acyl-CoAs and that appear to be present in higher plant peroxisomes and absent in mammalian peroxisomes. Therefore, plant peroxisomes are capable of performing complete beta-oxidation of acyl-CoA chains, wherea ... >> More
Short-chain acyl-CoA oxidases are beta-oxidation enzymes that are active on short-chain acyl-CoAs and that appear to be present in higher plant peroxisomes and absent in mammalian peroxisomes. Therefore, plant peroxisomes are capable of performing complete beta-oxidation of acyl-CoA chains, whereas mammalian peroxisomes can perform beta-oxidation of only those acyl-CoA chains that are larger than octanoyl-CoA (C8). In this report, we have shown that a novel acyl-CoA oxidase can oxidize short-chain acyl-CoA in plant peroxisomes. A peroxisomal short-chain acyl-CoA oxidase from Arabidopsis was purified following the expression of the Arabidopsis cDNA in a baculovirus expression system. The purified enzyme was active on butyryl-CoA (C4), hexanoyl-CoA (C6), and octanoyl-CoA (C8). Cell fractionation and immunocytochemical analysis revealed that the short-chain acyl-CoA oxidase is localized in peroxisomes. The expression pattern of the short-chain acyl-CoA oxidase was similar to that of peroxisomal 3-ketoacyl-CoA thiolase, a marker enzyme of fatty acid beta-oxidation, during post-germinative growth. Although the molecular structure and amino acid sequence of the enzyme are similar to those of mammalian mitochondrial acyl-CoA dehydrogenase, the purified enzyme has no activity as acyl-CoA dehydrogenase. These results indicate that the short-chain acyl-CoA oxidases function in fatty acid beta-oxidation in plant peroxisomes, and that by the cooperative action of long- and short-chain acyl-CoA oxidases, plant peroxisomes are capable of performing the complete beta-oxidation of acyl-CoA. << Less
J. Biol. Chem. 274:12715-12721(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase.
Van Veldhoven P.P., Vanhove G., Assselberghs S., Eyssen H.J., Mannaerts G.P.
Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidas ... >> More
Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidase activity with different acyl-CoAs. Short chain mono (hexanoyl-) and dicarboxylyl (glutaryl-)-CoAs and prostaglandin E2-CoA were oxidized exclusively by palmitoyl-CoA oxidase. Long chain mono (palmitoyl-) and dicarboxylyl (hexadecanedioyl-)-CoAs were oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the former enzyme catalyzing approximately 70% of the total eluate activity. The very long chain lignoceroyl-CoA was also oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the latter enzyme catalyzing approximately 65% of the total eluate activity. Long chain 2-methyl branched acyl-CoAs (2-methylpalmitoyl-CoA and pristanoyl-CoA) were oxidized for approximately 90% by pristanoyl-CoA oxidase, the remaining activity being catalyzed by trihydroxycoprostanoyl-CoA oxidase. The short chain 2-methylhexanoyl-CoA was oxidized by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase (approximately 60 and 40%, respectively, of the total eluate activity). Trihydroxycoprostanoyl-CoA was oxidized exclusively by trihydroxycoprostanoyl-CoA oxidase. No oxidase activity was found with isovaleryl-CoA and isobutyryl-CoA. Substrate dependences of palmitoyl-CoA oxidase and pristanoyl-CoA oxidase were very similar when assayed with the same (common) substrate. Since the two oxidases were purified to a similar extent and with a similar yield, the contribution of each enzyme to substrate oxidation in the column eluate probably reflects its contribution in the intact liver. << Less
J. Biol. Chem. 267:20065-20074(1992) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.