Enzymes
UniProtKB help_outline | 1,064 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline demethylphylloquinol Identifier CHEBI:87844 Charge 0 Formula C30H46O2 InChIKeyhelp_outline AEFNZGGBWOQYID-KQPZCCJBSA-N SMILEShelp_outline C=12C(O)=CC(=C(C1C=CC=C2)O)C\C=C(\CCC[C@@H](CCC[C@@H](CCCC(C)C)C)C)/C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phylloquinol Identifier CHEBI:28433 (Beilstein: 3168075; CAS: 572-96-3) help_outline Charge 0 Formula C31H48O2 InChIKeyhelp_outline BUFJIHPUGZHTHL-NKFFZRIASA-N SMILEShelp_outline CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\Cc1c(C)c(O)c2ccccc2c1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:40551 | RHEA:40552 | RHEA:40553 | RHEA:40554 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis.
Fatihi A., Latimer S., Schmollinger S., Block A., Dussault P.H., Vermaas W.F., Merchant S.S., Basset G.J.
Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosy ... >> More
Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process. << Less
Plant Cell 27:1730-1741(2015) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A(1) site and alteration of the equilibrium constant between A(1) and F(X) in photosystem I.
Sakuragi Y., Zybailov B., Shen G., Jones A.D., Chitnis P.R., van der Est A., Bittl R., Zech S., Stehlik D., Golbeck J.H., Bryant D.A.
A gene encoding a methyltransferase (menG) was identified in Synechocystis sp. PCC 6803 as responsible for transferring the methyl group to 2-phytyl-1,4-naphthoquinone in the biosynthetic pathway of phylloquinone, the secondary electron acceptor in photosystem I (PS I). Mass spectrometric measurem ... >> More
A gene encoding a methyltransferase (menG) was identified in Synechocystis sp. PCC 6803 as responsible for transferring the methyl group to 2-phytyl-1,4-naphthoquinone in the biosynthetic pathway of phylloquinone, the secondary electron acceptor in photosystem I (PS I). Mass spectrometric measurements showed that targeted inactivation of the menG gene prevented the methylation step in the synthesis of phylloquinone and led to the accumulation of 2-phytyl-1,4-naphthoquinone in PS I. Growth rates of the wild-type and the menG mutant strains under photoautotrophic and photomixotrophic conditions were virtually identical. The chlorophyll a content of the menG mutant strain was similar to that of wild type when the cells were grown at a light intensity of 50 microE m(-2) s(-1) but was slightly lower when grown at 300 microE m(-2) s(-1). Chlorophyll fluorescence emission measurements at 77 K showed a larger increase in the ratio of PS II to PS I in the menG mutant strain relative to the wild type as the light intensity was elevated from 50 to 300 microE m(-2) s(-1). CW EPR studies at 34 GHz and transient EPR studies at multiple frequencies showed that the quinone radical in the menG mutant has a similar overall line width as that for the wild type, but consistent with the presence of an aromatic proton at ring position 2, the pattern of hyperfine splittings showed two lines in the low-field region. The spin polarization pattern indicated that 2-phytyl-1,4-naphthoquinone is in the same orientation as phylloquinone, and out-of-phase, spin-echo modulation spectroscopy shows the same P700(+) to Q(-) center-to-center distance as in wild-type PS I. Transient EPR studies indicated that the lifetime for forward electron transfer from Q(-) to F(X) is slowed from 290 ns in the wild type to 600 ns in the menG mutant. The redox potential of 2-phytyl-1,4-naphthoquinone is estimated to be 50 to 60 mV more oxidizing than phylloquinone in the A(1) site, which translates to a lowering of the equilibrium constant between Q(-)/Q and F(X)(-)/F(X) by a factor of ca. 10. The lifetime of the P700(+) [F(A)/F(B)](-) backreaction decreased from 80 ms in the wild type to 20 ms in the menG mutant strain and is evidence for a thermally activated, uphill electron transfer through the quinone rather than a direct charge recombination between [F(A)/F(B)](-) and P700(+). << Less
-
Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant.
Lohmann A., Schoettler M.A., Brehelin C., Kessler F., Bock R., Cahoon E.B., Doermann P.
Phylloquinone (vitamin K(1)) is synthesized in cyanobacteria and in chloroplasts of plants, where it serves as electron carrier of photosystem I. The last step of phylloquinone synthesis in cyanobacteria is the methylation of 2-phytyl-1,4-naphthoquinone by the menG gene product. Here, we report th ... >> More
Phylloquinone (vitamin K(1)) is synthesized in cyanobacteria and in chloroplasts of plants, where it serves as electron carrier of photosystem I. The last step of phylloquinone synthesis in cyanobacteria is the methylation of 2-phytyl-1,4-naphthoquinone by the menG gene product. Here, we report that the uncharacterized Arabidopsis gene At1g23360, which shows sequence similarity to menG, functionally complements the Synechocystis menG mutant. An Arabidopsis mutant, AtmenG, carrying a T-DNA insertion in the gene At1g23360 is devoid of phylloquinone, but contains an increased amount of 2-phytyl-1,4-naphthoquinone. Phylloquinone and 2-phytyl-1,4-naphthoquinone in thylakoid membranes of wild type and AtmenG, respectively, predominantly localize to photosystem I, whereas excess amounts of prenyl quinones are stored in plastoglobules. Photosystem I reaction centers are decreased in AtmenG plants under high light, as revealed by immunoblot and spectroscopic measurements. Anthocyanin accumulation and chalcone synthase (CHS1) transcription are affected during high light exposure, indicating that alterations in photosynthesis in AtmenG affect gene expression in the nucleus. Photosystem II quantum yield is decreased under high light. Therefore, the loss of phylloquinone methylation affects photosystem I stability or turnover, and the limitation in functional photosystem I complexes results in overreduction of photosystem II under high light. << Less