Reaction participants Show >> << Hide
- Name help_outline L-erythro-N-acylsphing-4-enine Identifier CHEBI:83223 Charge 0 Formula C19H36NO3R SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@H](O)[C@@H](CO)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-glucose Identifier CHEBI:58885 (Beilstein: 3827329) help_outline Charge -2 Formula C15H22N2O17P2 InChIKeyhelp_outline HSCJRCZFDFQWRP-JZMIEXBBSA-L SMILEShelp_outline OC[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2ccc(=O)[nH]c2=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 272 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-glucosyl-L-erythro-N-acylsphing-4-enine Identifier CHEBI:83224 Charge 0 Formula C25H46NO8R SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@H](O)[C@@H](CO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 711 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 10,232 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:43364 | RHEA:43365 | RHEA:43366 | RHEA:43367 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Publications
-
Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes.
Paul P., Kamisaka Y., Marks D.L., Pagano R.E.
We present a method for solubilizing and purifying UDP-Glc:ceramide glucosyltransferase (EC 2.4.1.80; glucosylceramide synthase (GCS) from a rat liver and present data on its substrate specificity. A Golgi membrane fraction was isolated, washed with N-lauroylsarcosine, and subsequently treated wit ... >> More
We present a method for solubilizing and purifying UDP-Glc:ceramide glucosyltransferase (EC 2.4.1.80; glucosylceramide synthase (GCS) from a rat liver and present data on its substrate specificity. A Golgi membrane fraction was isolated, washed with N-lauroylsarcosine, and subsequently treated with 3[3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate to solubilize the enzyme. GCS activity was monitored throughout purification using UDP-Glc and a fluorescent ceramide analog as substrates. Purification of GCS was achieved via a two-step dye-agarose chromatography procedure using UDP-Glc to elute the enzyme. This resulted in an enrichment > 10,000-fold relative to the starting homogenate. The enzyme was further characterized by sedimentation on a glycerol gradient, I labeling, and SDS-polyacrylamide gel electrophoresis. which demonstrated that two polypeptides (60-70 kDa) corresponded closely with GCS activity. Purified GCS was found to require exogenous phospholipids for activity, and optimal results were obtained using dioleoyl phosphatidylcholine. Studies of the substrate specificity of the purified enzyme demonstrated that it was stereospecific and dependent on the nature and chain length of the N-acyl-spingosine or -sphinganine substrate. UDP-Glc was the preferred hexose donor, but TDP-glucose and CDP-glucose were also efficiently used. This study provides a basis for molecular characterization of this key enzyme in glycosphingolipid biosynthesis. << Less
J Biol Chem 271:2287-2293(1996) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.