Reaction participants Show >> << Hide
-
Name help_outline
3-demethylubiquinol
Identifier
CHEBI:84422
Charge
0
Formula
(C5H8)nC8H10O4
Search links
Involved in 8 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:10914Polymer name: a 3-demethylubiquinolPolymerization index help_outline nFormula C8H10O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
a ubiquinol
Identifier
CHEBI:17976
(CAS: 56275-39-9)
help_outline
Charge
0
Formula
C9H12O4(C5H8)n
Search links
Involved in 55 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9566Polymer name: a ubiquinolPolymerization index help_outline nFormula C9H12O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44380 | RHEA:44381 | RHEA:44382 | RHEA:44383 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
In vitro construction of the COQ metabolon unveils the molecular determinants of coenzyme Q biosynthesis.
Nicoll C.R., Alvigini L., Gottinger A., Cecchini D., Mannucci B., Corana F., Mascotti M.L., Mattevi A.
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3 ... >> More
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell. << Less
Nat Catal 7:148-160(2024) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Endogenous synthesis of coenzyme Q in eukaryotes.
Tran U.C., Clarke C.F.
Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although, the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, th ... >> More
Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although, the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, the eukaryotic Q biosynthesis pathway is best characterized in the budding yeast Saccharomyces cerevisiae. At least ten genes (COQ1-COQ10) have been shown to be required for Q biosynthesis and function in respiration. This review highlights recent knowledge about the endogenous synthesis of Q in eukaryotes, with emphasis on S. cerevisiae as a model system. << Less
Mitochondrion 7 Suppl:S62-71(2007) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis.
Poon W.W., Barkovich R.J., Hsu A.Y., Frankel A., Lee P.T., Shepherd J.N., Myles D.C., Clarke C.F.
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to gr ... >> More
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation steps. In yeast, the first O-methylation utilizes 3, 4-dihydroxy-5-hexaprenylbenzoic acid as a substrate and is thought to be catalyzed by Coq3p, a 32.7-kDa protein that is 40% identical to the Escherichia coli O-methyltransferase, UbiG. In this study, farnesylated analogs corresponding to the second O-methylation step, demethyl-Q(3) and Q(3), have been chemically synthesized and used to study Q biosynthesis in yeast mitochondria in vitro. Both yeast and rat Coq3p recognize the demethyl-Q(3) precursor as a substrate. In addition, E. coli UbiGp was purified and found to catalyze both O-methylation steps. Futhermore, antibodies to yeast Coq3p were used to determine that the Coq3 polypeptide is peripherally associated with the matrix-side of the inner membrane of yeast mitochondria. The results indicate that one O-methyltransferase catalyzes both steps in Q biosynthesis in eukaryotes and prokaryotes and that Q biosynthesis is carried out within the matrix compartment of yeast mitochondria. << Less
J. Biol. Chem. 274:21665-21672(1999) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.