Enzymes
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 3-demethylubiquinol-6 Identifier CHEBI:64253 Charge 0 Formula C38H58O4 InChIKeyhelp_outline ZQXNZNKHQXLVCV-HGJBZHBGSA-N SMILEShelp_outline COc1c(O)c(O)c(C)c(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)c1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 904 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ubiquinol-6 Identifier CHEBI:52970 (Beilstein: 2494092) help_outline Charge 0 Formula C39H60O4 InChIKeyhelp_outline DYOSCPIQEYRQEO-LPHQIWJTSA-N SMILEShelp_outline COc1c(O)c(C)c(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)c(O)c1OC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 827 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:44400 | RHEA:44401 | RHEA:44402 | RHEA:44403 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Regulation of coenzyme Q biosynthesis in yeast: a new complex in the block.
Gonzalez-Mariscal I., Garcia-Teston E., Padilla S., Martin-Montalvo A., Pomares-Viciana T., Vazquez-Fonseca L., Gandolfo-Dominguez P., Santos-Ocana C.
Coenzyme Q (CoQ) is an isoprenylated benzoquinone found in mitochondria, which functions mainly as an electron carrier from complex I or II to complex III in the inner membrane. CoQ is also an antioxidant that specifically prevents the oxidation of lipoproteins and the plasma membrane. Most of the ... >> More
Coenzyme Q (CoQ) is an isoprenylated benzoquinone found in mitochondria, which functions mainly as an electron carrier from complex I or II to complex III in the inner membrane. CoQ is also an antioxidant that specifically prevents the oxidation of lipoproteins and the plasma membrane. Most of the information about the synthesis of CoQ comes from studies performed in Saccharomyces cerevisiae. CoQ biosynthesis is a highly regulated process of sequential modifications of the benzene ring. There are three pieces of evidence supporting the involvement of a multienzymatic complex in yeast CoQ6 biosynthesis: (a) the accumulation of a unique early precursor in all null mutants of the COQ genes series, 4-hydroxy-3-hexaprenyl benzoate (HHB), (b) the lack of expression of several Coq proteins in COQ null mutants, and (c) the restoration of CoQ biosynthesis complex after COQ8 overexpression. The model we propose based on the formation of a multiprotein complex should facilitate a better understanding of CoQ biosynthesis. According to this model, the complex assembly requires the synthesis of a precursor such as HHB by Coq2p that must be recognized by the regulatory protein Coq4p to act as the core component of the complex. The phosphorylation of Coq3p and Coq5p by the kinase Coq8p facilitates the formation of an initial precomplex of 700 kDa that contains all Coq proteins with the exception of Coq7p. The precomplex is required for the synthesis of 5-demethoxy-Q6 , the substrate of Coq7p. When cells require de novo CoQ6 synthesis, Coq7p is dephosphorylated by Ptc7p, a mitochondrial phosphatase that activates the synthesis of CoQ6. This event allows for the full assembly of a complex of 1,300 kDa that is responsible for the final product of the pathway, CoQ6 . << Less
IUBMB Life 66:63-70(2014) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis.
Poon W.W., Barkovich R.J., Hsu A.Y., Frankel A., Lee P.T., Shepherd J.N., Myles D.C., Clarke C.F.
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to gr ... >> More
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation steps. In yeast, the first O-methylation utilizes 3, 4-dihydroxy-5-hexaprenylbenzoic acid as a substrate and is thought to be catalyzed by Coq3p, a 32.7-kDa protein that is 40% identical to the Escherichia coli O-methyltransferase, UbiG. In this study, farnesylated analogs corresponding to the second O-methylation step, demethyl-Q(3) and Q(3), have been chemically synthesized and used to study Q biosynthesis in yeast mitochondria in vitro. Both yeast and rat Coq3p recognize the demethyl-Q(3) precursor as a substrate. In addition, E. coli UbiGp was purified and found to catalyze both O-methylation steps. Futhermore, antibodies to yeast Coq3p were used to determine that the Coq3 polypeptide is peripherally associated with the matrix-side of the inner membrane of yeast mitochondria. The results indicate that one O-methyltransferase catalyzes both steps in Q biosynthesis in eukaryotes and prokaryotes and that Q biosynthesis is carried out within the matrix compartment of yeast mitochondria. << Less
J. Biol. Chem. 274:21665-21672(1999) [PubMed] [EuropePMC]
This publication is cited by 7 other entries.