Reaction participants Show >> << Hide
- Name help_outline (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate Identifier CHEBI:77016 Charge -1 Formula C22H31O2 InChIKeyhelp_outline MBMBGCFOFBJSGT-KUBAVDMBSA-M SMILEShelp_outline CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,355 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,623 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoyl-CoA Identifier CHEBI:74298 Charge -4 Formula C43H62N7O17P3S InChIKeyhelp_outline MENFZXMQSYYVRK-CRCGJGBYSA-J SMILEShelp_outline CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 545 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,211 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:44932 | RHEA:44933 | RHEA:44934 | RHEA:44935 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Analysis on the Substrate Specificity of Recombinant Human Acyl-CoA Synthetase ACSL4 Variants.
Shimbara-Matsubayashi S., Kuwata H., Tanaka N., Kato M., Hara S.
Acyl-CoA synthetase long-chain family members (ACSLs) are a family of enzymes that convert long-chain free fatty acids into their acyl-CoAs. ACSL4 is an ACSL isozyme with a strong preference for arachidonic acid (AA) and has been hypothesized to modulate the metabolic fates of AA. There are two AC ... >> More
Acyl-CoA synthetase long-chain family members (ACSLs) are a family of enzymes that convert long-chain free fatty acids into their acyl-CoAs. ACSL4 is an ACSL isozyme with a strong preference for arachidonic acid (AA) and has been hypothesized to modulate the metabolic fates of AA. There are two ACSL4 splice variants: ACSL4V1, which is the more abundant transcript, and ACSL4V2, which is believed to be restricted to the brain. In the present study, we expressed recombinant human ACSL4V1 and V2 in Spodoptera frugiperda 9 (Sf9) cells using the baculovirus expression system and then partially purified both variants by cobalt affinity column chromatography. We then established a novel ACSL assay system with LC-MS/MS, which is highly sensitive and applicable to various kinds of fatty acids, and used it to investigate the substrate specificity of recombinant human ACSL4V1 and V2. The results showed that both ACSL4 variants preferred various kinds of highly unsaturated fatty acids (HUFAs), including docosahexaenoic acid (DHA), adrenic acid (docosatetraenoic acid) and eicosapentaenoic acid (EPA), as well as AA as a substrate. Moreover, our kinetic studies revealed that the two variants had similar relative affinities for AA, EPA and DHA but different reaction rates for each HUFA. These results confirmed the importance of both of ACSL4 variants in the maintenance of membrane phospholipids bearing HUFAs. Structural analysis of these variants might reveal the molecular mechanism by which they maintain membrane phospholipids bearing HUFAs. << Less
Biol. Pharm. Bull. 42:850-855(2019) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Molecular characterization and expression of rat acyl-CoA synthetase 3.
Fujino T., Kang M.-J., Suzuki H., Iijima H., Yamamoto T.T.
Isolation and characterization of a rat brain cDNA identified a third acyl-CoA synthetase (ACS) designated ACS3. The deduced amino acid sequence of the cDNA revealed that ACS3 consists of 720 amino acids and exhibits a structural architecture common to ACSs from various origins. ACS3 expressed in ... >> More
Isolation and characterization of a rat brain cDNA identified a third acyl-CoA synthetase (ACS) designated ACS3. The deduced amino acid sequence of the cDNA revealed that ACS3 consists of 720 amino acids and exhibits a structural architecture common to ACSs from various origins. ACS3 expressed in COS cells was purified to near homogeneity. The purified ACS3 resolved by SDS-polyacrylamide gel electrophoresis into two major proteins of 79 and 80 kDa. Cell-free translation of a synthetic mRNA encoding the entire region of ACS3 revealed that the two isoforms were derived from the same mRNA. The purified ACS3 utilizes laurate and myristate most efficiently among C8-C22 saturated fatty acids and arachidonate and eicosapentaenoate among C16-C20 unsaturated fatty acids. Northern blot analysis revealed that ACS3 mRNA is most abundant in brain and, to a much lesser extent, in lung, adrenal gland, kidney, and small intestine. During the development of the rat brain, expression of ACS3 mRNA reached a maximum level at 15 days after birth and then declined gradually to 10% of the maximum in the adult brain. << Less
J. Biol. Chem. 271:16748-16752(1996) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol.
Melton E.M., Cerny R.L., Watkins P.A., DiRusso C.C., Black P.N.
The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fat ... >> More
The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (M(r) 70,000) and FATP2b (M(r) 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14-C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools destined for phosphatidylinositol incorporation. << Less
J. Biol. Chem. 286:30670-30679(2011) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.