Reaction participants Show >> << Hide
- Name help_outline choloyl-CoA Identifier CHEBI:57373 Charge -4 Formula C45H70N7O20P3S InChIKeyhelp_outline ZKWNOTQHFKYUNU-JGCIYWTLSA-J SMILEShelp_outline [H][C@@](C)(CCC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@]1([H])CC[C@@]2([H])[C@]3([H])[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@@]3([H])C[C@H](O)[C@]12C 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline taurine Identifier CHEBI:507393 Charge 0 Formula C2H7NO3S InChIKeyhelp_outline XOAAWQZATWQOTB-UHFFFAOYSA-N SMILEShelp_outline [NH3+]CCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline taurocholate Identifier CHEBI:36257 (Beilstein: 3919947) help_outline Charge -1 Formula C26H44NO7S InChIKeyhelp_outline WBWWGRHZICKQGZ-HZAMXZRMSA-M SMILEShelp_outline [H][C@@]12C[C@H](O)CC[C@]1(C)[C@@]1([H])C[C@H](O)[C@]3(C)[C@]([H])(CC[C@@]3([H])[C@]1([H])[C@H](O)C2)[C@H](C)CCC(=O)NCCS([O-])(=O)=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:47100 | RHEA:47101 | RHEA:47102 | RHEA:47103 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
Reactome help_outline |
Publications
-
Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase.
Falany C.N., Johnson M.R., Barnes S., Diasio R.B.
In order to establish whether a single enzyme in human liver was capable of conjugating bile acids with both glycine and taurine, a cDNA encoding human liver bile acid-CoA:amino acid N-acyltransferase (hBAT) has been isolated and characterized. A specific immunoaffinity-purified rabbit anti-hBAT p ... >> More
In order to establish whether a single enzyme in human liver was capable of conjugating bile acids with both glycine and taurine, a cDNA encoding human liver bile acid-CoA:amino acid N-acyltransferase (hBAT) has been isolated and characterized. A specific immunoaffinity-purified rabbit anti-hBAT polyclonal antibody was used to screen a lambda Zap XR human liver cDNA library resulting in the isolation of two unique clones. hBAT8 and hBAT9 (1669 and 1491 base pairs in length, respectively) were isolated following screening of 4 x 10(5) clones of the cDNA library. Restriction mapping and sequence analysis demonstrated that the cDNAs were identical except hBAT8 contained an additional 178 bases of 5' sequence; hBAT8 was completely sequenced, characterized, and used for all subsequent studies. hBAT8 consisted of a 184-nucleotide 5'-nontranslated region, an open reading frame of 1,254 bases predicting a protein of 418 amino acids with a molecular mass of 46,296 Da, and a 3'-nontranslated region of 209 nucleotides followed by a poly(A)+ tail. The identity of the cDNA was confirmed by the following findings: 1) the open reading frame began with an ATG codon and was followed by a nucleotide sequence which, when translated, corresponded exactly to the first 17 NH2-terminal amino acids of purified human liver BAT; 2) cytosol of Escherichia coli XL1-Blue cells transfected with hBAT8 subcloned into an expression vector, pKK233-2, demonstrated significant enzymatic activity for the conjugation of both taurine and glycine with cholic acid; 3) bacterial expression of hBAT8 generated a protein that comigrated with hBAT from human liver during SDS-polyacrylamide gel electrophoresis and cross-reacted with a specific polyclonal rabbit anti-hBAT antibody during immunoblot analysis; 4) kinetic characteristics of the expressed enzyme were very similar to those reported for purified liver BAT. These data demonstrate that a single cDNA is present in human liver which codes for a protein capable of catalyzing the conjugation of cholic acid with both glycine and taurine. << Less
J. Biol. Chem. 269:19375-19379(1994) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
The human bile acid-CoA:amino acid N-acyltransferase functions in the conjugation of fatty acids to glycine.
O'Byrne J., Hunt M.C., Rai D.K., Saeki M., Alexson S.E.
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT ... >> More
Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT (hBACAT) and identifying BACAT as a member of the type I acyl-CoA thioesterase gene family. We therefore hypothesized that hBACAT may also hydrolyze fatty acyl-CoAs and/or conjugate fatty acids to glycine. We show here that recombinant hBACAT also can hydrolyze long- and very long-chain saturated acyl-CoAs (mainly C16:0-C26:0) and by mass spectrometry verified that hBACAT also conjugates fatty acids to glycine. Tissue expression studies showed strong expression of BACAT in liver, gallbladder, and the proximal and distal intestine. However, BACAT is also expressed in a variety of tissues unrelated to bile acid formation and transport, suggesting important functions also in the regulation of intracellular levels of very long-chain fatty acids. Green fluorescent protein localization experiments in human skin fibroblasts showed that the hBACAT enzyme is mainly cytosolic. Therefore, the cytosolic BACAT enzyme may play important roles in protection against toxicity by accumulation of unconjugated bile acids and non-esterified very long-chain fatty acids. << Less
J. Biol. Chem. 278:34237-34244(2003) [PubMed] [EuropePMC]
This publication is cited by 17 other entries.