Enzymes
| UniProtKB help_outline | 4,491 proteins |
| Enzyme class help_outline |
|
| GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
Nπ-phospho-L-histidyl-[protein]
Identifier
RHEA-COMP:9746
Reactive part
help_outline
- Name help_outline Nπ-phospho-L-histidine residue Identifier CHEBI:64837 Charge -2 Formula C6H6N3O4P SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N(C=NC1)P([O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 24 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sucrose Identifier CHEBI:17992 (CAS: 57-50-1) help_outline Charge 0 Formula C12H22O11 InChIKeyhelp_outline CZMRCDWAGMRECN-UGDNZRGBSA-N SMILEShelp_outline OC[C@H]1O[C@H](O[C@]2(CO)O[C@H](CO)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sucrose 6G-phosphate Identifier CHEBI:91002 Charge -2 Formula C12H21O14P InChIKeyhelp_outline WQQSIXKPRAUZJL-UGDNZRGBSA-L SMILEShelp_outline [C@H]1([C@](O[C@@H]([C@H]1O)CO)(CO)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)COP(=O)([O-])[O-])O)O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-histidyl-[protein]
Identifier
RHEA-COMP:9745
Reactive part
help_outline
- Name help_outline L-histidine residue Identifier CHEBI:29979 Charge 0 Formula C6H7N3O SMILEShelp_outline C(*)(=O)[C@@H](N*)CC=1N=CNC1 2D coordinates Mol file for the small molecule Search links Involved in 41 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:49236 | RHEA:49237 | RHEA:49238 | RHEA:49239 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| Gene Ontology help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Publications
-
Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system.
Sato Y., Poy F., Jacobson G.R., Kuramitsu H.K.
The Streptococcus mutans GS-5 scrA gene coding for enzyme IIScr of the phosphoenolpyruvate-dependent sucrose phosphotransferase system (PTS) was localized upstream from the scrB gene coding for sucrose-6-phosphate hydrolase activity after Mu dE transposon mutagenesis of plasmid pMH613. The cloned ... >> More
The Streptococcus mutans GS-5 scrA gene coding for enzyme IIScr of the phosphoenolpyruvate-dependent sucrose phosphotransferase system (PTS) was localized upstream from the scrB gene coding for sucrose-6-phosphate hydrolase activity after Mu dE transposon mutagenesis of plasmid pMH613. The cloned scrA gene product was identified as a 68-kilodalton protein by minicell analysis after isolation of the gene in plasmid pD4. In addition, the membrane fraction from Escherichia coli cells containing pD4 exhibited sucrose PTS activity upon complementation with enzyme I and HPr from strain GS-5. The nucleotide sequence of the scrA region revealed that this gene was located immediately upstream from the scrB gene and divergently transcribed from the opposite DNA strand. The scrA gene was preceded by potential Shine-Dalgarno and promoterlike sequences and was followed by a transcription terminator-like sequence. The scrA gene coded for an enzyme IIScr protein of 664 amino acid residues with a calculated molecular weight of 69,983. This enzyme IIScr protein was larger than the comparable proteins from Bacillus subtilis and E. coli containing sucrose-metabolizing plasmid pUR400. The 491-amino-acid N-terminal sequence of the S. mutans enzyme IIScr was homologous with the B. subtilis and E. coli sequences, and the 173-amino-acid C-terminal sequence of the S. mutans protein was also homologous with the Salmonella typhimurium enzyme IIIGlc and the 162-amino-acid C terminus of E. coli enzyme IIBgl. These results suggest that the sucrose PTS system of S. mutans is enzyme III independent. << Less
-
Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans.
St Martin E.J., Wittenberger C.L.
A phosphoenolpyruvate-dependent sucrose phosphotransferase system has been identified in Streptococcus mutans. Sucrose phosphotransferase activity was inducible by sucrose and had an apparent Km for sucrose of 70 microM. The product of the sucrose phosphotransferase reaction was isolated and ident ... >> More
A phosphoenolpyruvate-dependent sucrose phosphotransferase system has been identified in Streptococcus mutans. Sucrose phosphotransferase activity was inducible by sucrose and had an apparent Km for sucrose of 70 microM. The product of the sucrose phosphotransferase reaction was isolated and identified as sucrose phosphate. Additional analysis revealed that the phosphate group was on the glucose moiety. Mutants unable to grow in media containing low concentrations of sucrose were isolated and found to be missing either sucrose phosphotransferase activity or the ability to hydrolyze sucrose phosphate. << Less
-
Molecular cloning and characterization of scrB, the structural gene for the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system sucrose-6-phosphate hydrolase.
Lunsford R.D., Macrina F.L.
A DNA fragment encoding the sucrose-6-phosphate hydrolase component of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system has been recovered from a plasmid-based genomic library of strain GS5. The locus, designated scrB, was found to reside within a 2.9-kiloba ... >> More
A DNA fragment encoding the sucrose-6-phosphate hydrolase component of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system has been recovered from a plasmid-based genomic library of strain GS5. The locus, designated scrB, was found to reside within a 2.9-kilobase-pair restriction fragment present on the chimeric molecule pVA1343 (7.3 kilobase pairs). Minicell analysis of pVA1343-directed translation products revealed that the scrB product synthesized in Escherichia coli V1343 was a single peptide of Mr 57,000. This polypeptide was reactive with antiserum prepared against S. mutans intracellular invertase, which has been previously shown to have an Mr of 43,000 to 48,000. The basis of this difference in Mr was not established but may represent a posttranslational proteolytic event which occurred in S. mutans but not in recombinant V1343. Sucrose-6-phosphate hydrolase purified to homogeneity from V1343 exhibited Michaelis constants of 180 mM for sucrose and 0.08 mM for sucrose-6-phosphate. Deletion analysis of pVA1343 facilitated the assignment of a coding region for the hydrolase within the insert, as well as an orientation for the transcription of scrB. scrB-defective strains of S. mutans constructed by additive integration of an insertionally inactivated scrB locus exhibited the sucrose sensitivity characteristic of this mutant class. Similar loci were detected by DNA-DNA hybridization in additional strains of S. mutans and two strains of Streptococcus cricetus, but not in single strain representatives of S. rattus, S. sobrinus, S. sanguis I and II, S. salivarius, or S. mitis. << Less
-
Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria.
Fouet A., Arnaud M., Klier A., Rapoport G.
Sucrose is transported into Bacillus subtilis cells by way of a phosphotransferase system, which consists of a specific enzyme II, a nonspecific enzyme I, and a histidine-containing phosphocarrier protein. Mutations in the sacP locus abolish the specific transport of sucrose. The B. subtilis sacP ... >> More
Sucrose is transported into Bacillus subtilis cells by way of a phosphotransferase system, which consists of a specific enzyme II, a nonspecific enzyme I, and a histidine-containing phosphocarrier protein. Mutations in the sacP locus abolish the specific transport of sucrose. The B. subtilis sacP gene was cloned and expressed in Escherichia coli, and transformed cells could transport and phosphorylate sucrose. This indicates that the sacP gene product is enzyme II of the sucrose phosphotransferase system of B. subtilis. The nucleotide sequence of the sacP gene was determined and was found to overlap with the sacA gene at the tetranucleotide ATGA, which may allow a translational coupling between sacP and sacA. The two genes are therefore probably organized in an operon structure with the promoter located 5' to sacP gene. The deduced amino acid sequence gave a Mr of 48,945 for the sucrose-specific enzyme II polypeptide. The amino acid sequence was compared to that of three other known enteric bacterial enzymes II (beta-glucoside-specific enzyme II, mannitol-specific enzyme II, and glucose-specific enzyme II). Homology was found with beta-glucoside enzyme II, and well conserved regions were identified through the comparison of the proteins. << Less
Proc. Natl. Acad. Sci. U.S.A. 84:8773-8777(1987) [PubMed] [EuropePMC]
-
Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase.
Titgemeyer F., Jahreis K., Ebner R., Lengeler J.W.
The Klebsiella pneumoniae genes scrA and scrB are indispensable for sucrose (Scr) utilisation. Gene scrA codes for an Enzyme IIScr (IIScr) transport protein of the phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system (PTS), while scrB encodes a sucrose 6-phosphate specific inverta ... >> More
The Klebsiella pneumoniae genes scrA and scrB are indispensable for sucrose (Scr) utilisation. Gene scrA codes for an Enzyme IIScr (IIScr) transport protein of the phosphoenolpyruvate-dependent carbohydrate: phosphotransferase system (PTS), while scrB encodes a sucrose 6-phosphate specific invertase. A 3.7 kbscr AB DNA fragment has been cloned from K. pneumoniae and expressed in Escherichia coli. Its nucleotide sequence was determined and the coding regions for scrA (1371 bp) and scrB (1401 bp) were identified by genetic complementation, enzyme activity test and radiolabelling of the gene products. In addition, the nucleotide sequence of the scrB gene from conjugative plasmid pUR400 isolated from Salmonella typhimurium was also determined and errors in the previously published sequence of the scrA gene of pUR400 were corrected. Extensive similarity was found between the sequences of ScrA and other Enzymes II, as well as between the two invertases and other sucrose hydrolysing enzymes. Based on the analysis of seven IIScr proteins, a hypothetical model of the secondary structure of IIScr is proposed. << Less
-
Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system.
Jiang L., Cai J., Wang J., Liang S., Xu Z., Yang S.T.
The uptake and metabolism of sucrose, the major sugar in industrial cane molasses, by Clostridium tyrobutyricum ZJU 8235 was investigated and this study provided the first definitive evidence for phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity in butyric acid-producing ... >> More
The uptake and metabolism of sucrose, the major sugar in industrial cane molasses, by Clostridium tyrobutyricum ZJU 8235 was investigated and this study provided the first definitive evidence for phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity in butyric acid-producing bacteria. Glucose was utilized preferentially to sucrose when both substrates were present in the medium. The PEP-dependent sucrose: PTS was induced by growing C. tyrobutyricum on sucrose (but not glucose) as the sole carbon source. Extract fractionation and PTS reconstitution experiments revealed that both soluble and membrane components were required for bioactivity. Sucrose-6-phosphate hydrolase and fructokinase activities were also detected in sucrose-grown cultures. Based on these findings, a pathway of sucrose metabolism in this organism was proposed that includes the forming of sucrose-6-phosphate via the PTS and its further degradation into glucose-6-phosphate and fructose-6-phosphate. << Less