Reaction participants Show >> << Hide
- Name help_outline lithocholate Identifier CHEBI:29744 Charge -1 Formula C24H39O3 InChIKeyhelp_outline SMEROWZSTRWXGI-HVATVPOCSA-M SMILEShelp_outline [H][C@]12CC[C@]3([H])[C@]([H])(CC[C@]4(C)[C@]([H])(CC[C@@]34[H])[C@H](C)CCC([O-])=O)[C@@]1(C)CC[C@@H](O)C2 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3'-phosphoadenylyl sulfate Identifier CHEBI:58339 Charge -4 Formula C10H11N5O13P2S InChIKeyhelp_outline GACDQMDRPRGCTN-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OS([O-])(=O)=O)[C@@H](OP([O-])([O-])=O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 132 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline lithocholate 3-sulfate Identifier CHEBI:133940 Charge -2 Formula C24H38O6S InChIKeyhelp_outline AXDXVEYHEODSPN-HVATVPOCSA-L SMILEShelp_outline C1[C@@]2([C@]3(CC[C@]4([C@]([C@@]3(CC[C@@]2(C[C@@H](C1)OS([O-])(=O)=O)[H])[H])(CC[C@@]4([C@H](C)CCC([O-])=O)[H])[H])C)[H])C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenosine 3',5'-bisphosphate Identifier CHEBI:58343 Charge -4 Formula C10H11N5O10P2 InChIKeyhelp_outline WHTCPDAXWFLDIH-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](OP([O-])([O-])=O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 166 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 10,232 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:51064 | RHEA:51065 | RHEA:51066 | RHEA:51067 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| Reactome help_outline |
Publications
-
Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1).
Huang J., Bathena S.P., Tong J., Roth M., Hagenbuch B., Alnouti Y.
Human sulfotransferase 2A1 (SULT2A1) is a member of the hydroxysteroid sulfotransferase (SULT2) family that mediates sulfo-conjugation of a variety of endogenous molecules including dehydroepiandrosterone (DHEA) and bile acids. In this study, we have constructed a stable cell line expressing SULT2 ... >> More
Human sulfotransferase 2A1 (SULT2A1) is a member of the hydroxysteroid sulfotransferase (SULT2) family that mediates sulfo-conjugation of a variety of endogenous molecules including dehydroepiandrosterone (DHEA) and bile acids. In this study, we have constructed a stable cell line expressing SULT2A1 by transfection into HEK293 cells. The expression system was used to characterize and compare the sulfation kinetics of DHEA and 15 human bile acids by SULT2A1. Formation of DHEA sulfate demonstrated Michaelis-Menten kinetics with apparent K(m) and V(max) values of 3.8 muM and 130.8 pmol min(-1) mg(-1) protein, respectively. Sulfation kinetics of bile acids also demonstrated Michaelis-Menten kinetics with a marked variation in apparent K(m) and V(max) values between individual bile acids. Sulfation affinity was inversely proportional to the number of hydroxyl groups of bile acids. The monohydroxy- and most toxic bile acid (lithocholic acid) had the highest affinity, whereas the trihydroxy- and least toxic bile acid (cholic acid) had the lowest affinity to sulfation by SULT2A1. Intrinsic clearance (CL(int)) of ursodeoxycholic acid (UDCA) was approximately 1.5- and 9.0-fold higher than that of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), respectively, despite the fact that all three are dihydroxy bile acids. << Less
Xenobiotica 40:184-194(2010) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
Structural and chemical profiling of the human cytosolic sulfotransferases.
Allali-Hassani A., Pan P.W., Dombrovski L., Najmanovich R., Tempel W., Dong A., Loppnau P., Martin F., Thornton J., Edwards A.M., Bochkarev A., Plotnikov A.N., Vedadi M., Arrowsmith C.H.
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity i ... >> More
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique "chemical fingerprints" for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural "priming" of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone. << Less
PLoS Biol. 5:E97-E97(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.