Reaction participants Show >> << Hide
- Name help_outline D-ribulose Identifier CHEBI:17173 (CAS: 488-84-6) help_outline Charge 0 Formula C5H10O5 InChIKeyhelp_outline ZAQJHHRNXZUBTE-NQXXGFSBSA-N SMILEShelp_outline OC[C@@H](O)[C@@H](O)C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-xylulose Identifier CHEBI:17140 (CAS: 551-84-8) help_outline Charge 0 Formula C5H10O5 InChIKeyhelp_outline ZAQJHHRNXZUBTE-WUJLRWPWSA-N SMILEShelp_outline C(O)C(=O)[C@@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 6 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:51544 | RHEA:51545 | RHEA:51546 | RHEA:51547 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline |
Publications
-
X-ray structure of Arthrobacter globiformis M30 ketose 3-epimerase for the production of D-allulose from D-fructose.
Yoshida H., Yoshihara A., Gullapalli P.K., Ohtani K., Akimitsu K., Izumori K., Kamitori S.
The X-ray structure of ketose 3-epimerase from Arthrobacter globiformis M30, which was previously reported to be a D-allulose 3-epimerase (AgD-AE), was determined at 1.96 Å resolution. The crystal belonged to the hexagonal space group P6<sub>5</sub>22, with unit-cell parameters a = b = 103.98, c = ... >> More
The X-ray structure of ketose 3-epimerase from Arthrobacter globiformis M30, which was previously reported to be a D-allulose 3-epimerase (AgD-AE), was determined at 1.96 Å resolution. The crystal belonged to the hexagonal space group P6<sub>5</sub>22, with unit-cell parameters a = b = 103.98, c = 256.53 Å. The structure was solved by molecular replacement using the structure of Mesorhizobium loti L-ribulose 3-epimerase (MlL-RE), which has 41% sequence identity, as a search model. A hexagonal crystal contained two molecules in the asymmetric unit, and AgD-AE formed a homotetramer with twofold symmetry. The overall structure of AgD-AE was more similar to that of MlL-RE than to the known structures of D-psicose (alternative name D-allulose) 3-epimerases (D-PEs or D-AEs), although AgD-AE and MlL-RE have different substrate specificities. Both AgD-AE and MlL-RE have long helices in the C-terminal region that would contribute to the stability of the homotetramer. AgD-AE showed higher enzymatic activity for L-ribulose than D-allulose; however, AgD-AE is stable and is a unique useful enzyme for the production of D-allulose from D-fructose. << Less
Acta Crystallogr. F Struct. Biol. Commun. 74:669-676(2018) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Gene cloning and characterization of L-ribulose 3-epimerase from Mesorhizobium loti and its application to rare sugar production.
Uechi K., Takata G., Fukai Y., Yoshihara A., Morimoto K.
A gene encoding L-ribulose 3-epimerase (L-RE) from Mesorhizobium loti, an important enzyme for rare sugar production by the Izumoring strategy, was cloned and overexpressed. The enzyme showed highest activity toward L-ribulose (230 U/mg) among keto-pentoses and keto-hexoses. This is the first repo ... >> More
A gene encoding L-ribulose 3-epimerase (L-RE) from Mesorhizobium loti, an important enzyme for rare sugar production by the Izumoring strategy, was cloned and overexpressed. The enzyme showed highest activity toward L-ribulose (230 U/mg) among keto-pentoses and keto-hexoses. This is the first report on a ketose 3-epimerase showing highest activity toward keto-pentose. The optimum enzyme reaction conditions for L-RE were determined to be sodium phosphate buffer (pH 8.0) at 60 °C. The enzyme showed of higher maximum reaction a rate (416 U/mg) and catalytic efficiency (43 M(-1) min(-1)) for L-ribulose than other known ketose 3-epimerases. It was able to produce L-xylulose efficiently from ribitol in two-step reactions. In the end, 7.2 g of L-xylulose was obtained from 20 g of ribitol via L-ribulose at a yield of 36%. << Less
Biosci. Biotechnol. Biochem. 77:511-515(2013) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose.
Zhang L., Mu W., Jiang B., Zhang T.
A non-characterized gene, previously proposed as the D-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with D-fructose and decreased f ... >> More
A non-characterized gene, previously proposed as the D-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with D-fructose and decreased for other substrates in the order: D-tagatose, D-psicose, D-ribulose, D-xylulose and D-sorbose. Its activity was maximal at pH 9 and 40 degrees C while being enhanced by Mn(2+). At pH 9 and 40 degrees C, 118 g D-psicose l(-1) was produced from 700 g D-fructose l(-1) after 3 h. << Less
Biotechnol. Lett. 31:857-862(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
Comments
Cited by: "Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-244." Itoh H., Okaya H., Khan A.R., Tajima S., Hayakawa S., Izumori K. Biosci. Biotechnol. Biochem. 58:2168-2171(1994)