Reaction participants Show >> << Hide
- Name help_outline a short-chain (3S)-3-hydroxyacyl-CoA Identifier CHEBI:136760 Charge -4 Formula C24H35N7O18P3SR SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC(C)([C@H](C(NCCC(NCCSC(=O)C[C@H](*)O)=O)=O)O)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a short-chain (2E)-enoyl-CoA Identifier CHEBI:87488 Charge -4 Formula C24H33N7O17P3SR SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\[*] 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,148 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:52664 | RHEA:52665 | RHEA:52666 | RHEA:52667 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline |
Related reactions help_outline
Specific form(s) of this reaction
More general form(s) of this reaction
Publications
-
Purification and characterization of crotonase from Clostridium acetobutylicum.
Waterson R.M., Castellino F.J., Hass G.M., Hill R.L.
-
Clinical, biochemical and metabolic characterisation of a mild form of human short-chain enoyl-CoA hydratase deficiency: significance of increased N-acetyl-S-(2-carboxypropyl)cysteine excretion.
Yamada K., Aiba K., Kitaura Y., Kondo Y., Nomura N., Nakamura Y., Fukushi D., Murayama K., Shimomura Y., Pitt J., Yamaguchi S., Yokochi K., Wakamatsu N.
<h4>Background</h4>Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been ... >> More
<h4>Background</h4>Short-chain enoyl-CoA hydratase-ECHS1-catalyses many metabolic pathways, including mitochondrial short-chain fatty acid β-oxidation and branched-chain amino acid catabolic pathways; however, the metabolic products essential for the diagnosis of ECHS1 deficiency have not yet been determined. The objective of this report is to characterise ECHS1 and a mild form of its deficiency biochemically, and to determine the candidate metabolic product that can be efficiently used for neonatal diagnosis.<h4>Methods</h4>We conducted a detailed clinical, molecular genetics, biochemical and metabolic analysis of sibling patients with ECHS1 deficiency. Moreover, we purified human ECHS1, and determined the substrate specificity of ECHS1 for five substrates via different metabolic pathways.<h4>Results</h4>Human ECHS1 catalyses the hydration of five substrates via different metabolic pathways, with the highest specificity for crotonyl-CoA and the lowest specificity for tiglyl-CoA. The patients had relatively high (∼7%) residual ECHS1 enzyme activity for crotonyl-CoA and methacrylyl-CoA caused by the compound heterozygous mutations (c.176A>G, (p.N59S) and c.413C>T, (p.A138V)) with normal mitochondrial complex I-IV activities. Affected patients excrete large amounts of N-acetyl-S-(2-carboxypropyl)cysteine, a metabolite of methacrylyl-CoA.<h4>Conclusions</h4>Laboratory data and clinical features demonstrated that the patients have a mild form of ECHS1 deficiency harbouring defective valine catabolic and β-oxidation pathways. N-Acetyl-S-(2-carboxypropyl) cysteine level was markedly high in the urine of the patients, and therefore, N-acetyl-S-(2-carboxypropyl)cysteine was regarded as a candidate metabolite for the diagnosis of ECHS1 deficiency. This metabolite is not part of current routine metabolic screening protocols, and its inclusion, therefore, holds immense potential in accurate diagnosis. << Less
J. Med. Genet. 52:691-698(2015) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.