Enzymes
| UniProtKB help_outline | 840 proteins |
| Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
L-asparaginyl-[hypoxia-inducible factor alpha subunit]
Identifier
RHEA-COMP:13833
Reactive part
help_outline
- Name help_outline L-asparagine residue Identifier CHEBI:50347 Charge 0 Formula C4H6N2O2 SMILEShelp_outline C([C@@H](C(*)=O)N*)C(N)=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-oxoglutarate Identifier CHEBI:16810 (CAS: 64-15-3) help_outline Charge -2 Formula C5H4O5 InChIKeyhelp_outline KPGXRSRHYNQIFN-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,851 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
(3S)-3-hydroxy-L-asparaginyl-[hypoxia-inducible factor alpha subunit]
Identifier
RHEA-COMP:13834
Reactive part
help_outline
- Name help_outline (3S)-3-hydroxy-L-asparagine residue Identifier CHEBI:138107 Charge 0 Formula C4H6N2O3 SMILEShelp_outline [C@H]([C@@H](C(*)=O)N*)(C(N)=O)O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 349 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 1,058 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:54268 | RHEA:54269 | RHEA:54270 | RHEA:54271 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.
Lando D., Peet D.J., Gorman J.J., Whelan D.A., Whitelaw M.L., Bruick R.K.
Mammalian cells adapt to hypoxic conditions through a transcriptional response pathway mediated by the hypoxia-inducible factor, HIF. HIF transcriptional activity is suppressed under normoxic conditions by hydroxylation of an asparagine residue within its C-terminal transactivation domain, blockin ... >> More
Mammalian cells adapt to hypoxic conditions through a transcriptional response pathway mediated by the hypoxia-inducible factor, HIF. HIF transcriptional activity is suppressed under normoxic conditions by hydroxylation of an asparagine residue within its C-terminal transactivation domain, blocking association with coactivators. Here we show that the protein FIH-1, previously shown to interact with HIF, is an asparaginyl hydroxylase. Like known hydroxylase enzymes, FIH-1 is an Fe(II)-dependent enzyme that uses molecular O(2) to modify its substrate. Together with the recently discovered prolyl hydroxylases that regulate HIF stability, this class of oxygen-dependent enzymes comprises critical regulatory components of the hypoxic response pathway. << Less
-
Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family.
Hewitson K.S., McNeill L.A., Riordan M.V., Tian Y.-M., Bullock A.N., Welford R.W., Elkins J.M., Oldham N.J., Bhattacharya S., Gleadle J.M., Ratcliffe P.J., Pugh C.W., Schofield C.J.
Activity of the hypoxia-inducible factor (HIF) complex is controlled by oxygen-dependent hydroxylation of prolyl and asparaginyl residues. Hydroxylation of specific prolyl residues by 2-oxoglutarate (2-OG)-dependent oxygenases mediates ubiquitinylation and proteasomal destruction of HIF-alpha. Hyd ... >> More
Activity of the hypoxia-inducible factor (HIF) complex is controlled by oxygen-dependent hydroxylation of prolyl and asparaginyl residues. Hydroxylation of specific prolyl residues by 2-oxoglutarate (2-OG)-dependent oxygenases mediates ubiquitinylation and proteasomal destruction of HIF-alpha. Hydroxylation of an asparagine residue in the C-terminal transactivation domain (CAD) of HIF-alpha abrogates interaction with p300, preventing transcriptional activation. Yeast two-hybrid assays recently identified factor inhibiting HIF (FIH) as a protein that associates with the CAD region of HIF-alpha. Since FIH contains certain motifs present in iron- and 2-OG-dependent oxygenases we investigated whether FIH was the HIF asparaginyl hydroxylase. Assays using recombinant FIH and HIF-alpha fragments revealed that FIH is the enzyme that hydroxylates the CAD asparagine residue, that the activity is directly inhibited by cobalt(II) and limited by hypoxia, and that the oxygen in the alcohol of the hydroxyasparagine residue is directly derived from dioxygen. Sequence analyses involving FIH link the 2-OG oxygenases with members of the cupin superfamily, including Zn(II)-utilizing phosphomannose isomerase, revealing structural and evolutionary links between these metal-binding proteins that share common motifs. << Less
-
Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor.
Coleman M.L., McDonough M.A., Hewitson K.S., Coles C., Mecinovic J., Edelmann M., Cook K.M., Cockman M.E., Lancaster D.E., Kessler B.M., Oldham N.J., Ratcliffe P.J., Schofield C.J.
The stability and activity of hypoxia-inducible factor (HIF) are regulated by the post-translational hydroxylation of specific prolyl and asparaginyl residues. We show that the HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also catalyzes hydroxylation of highly conserved asparaginyl re ... >> More
The stability and activity of hypoxia-inducible factor (HIF) are regulated by the post-translational hydroxylation of specific prolyl and asparaginyl residues. We show that the HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also catalyzes hydroxylation of highly conserved asparaginyl residues within ankyrin repeat (AR) domains (ARDs) of endogenous Notch receptors. AR hydroxylation decreases the extent of ARD binding to FIH while not affecting signaling through the canonical Notch pathway. ARD proteins were found to efficiently compete with HIF for FIH-dependent hydroxylation. Crystallographic analyses of the hydroxylated Notch ARD (2.35A) and of Notch peptides bound to FIH (2.4-2.6A) reveal the stereochemistry of hydroxylation on the AR and imply that significant conformational changes are required in the ARD fold in order to enable hydroxylation at the FIH active site. We propose that ARD proteins function as natural inhibitors of FIH and that the hydroxylation status of these proteins provides another oxygen-dependent interface that modulates HIF signaling. << Less
J. Biol. Chem. 282:24027-24038(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.